
I 

f 

. 
,. 

/ 1 () 33 
I 

o 

ATS·5 RiNGI RECEIVER 
A D 

L·BAND EXPERIMENT 

VOLUME II 
DATA RED'UC110N AND ANALYSIS 

APPLICATIONS TECHNO OGY SATELLITE PROGRAM 
<:ON1RAC1 NAS 5-21598 

( ASA - CR -1 9033) ATS- 5 RANGING RECEIVER 
LAD EXPER KENT VOLUME 2: DATA 

REDUCTIO A D ANALYSIS Final Re port 

N7 -29500 

Une as 
( es inghouse Electric cor p.) 127 p HC 
9 . 50 CSCL 17 B G 3/0 7 5 .;:..;:;9;.:.;6 6=-_ 

PREPARED FOR 

NATIONAL AERONAU ICS AND SPACE ADMINISTRATION 
GODDARD SPACE FLIGHT CENTER 

GREENln T, MARYLAND 

I 
i 



I 

~ 

( 

r~ 

I 

r 

b' 
DOCUMENT RE.l..EASE FORM 

G. Patterson, Code 951 ~Marcn 19,1974) 

REFER TO GHB 2200.1 A, TECHNICAL INFORMATION AND GRAPHIC ARTS HANDBOOK, FOR DETAILED INSTRUCTIONS 

Document Title ATS-5 Ranging Receiver and L-Band Ex:periment - Volume II - Data Reduction 
and Anal sis Final Report 

Document Number Contractor Name/Contrect No. (if contract report) 

Westinghouse Electric Corp Bal t., MD 

ANN0UNCEMENT AND RELEASE OF THIS DOCUMENT ARE SUBJECT TO THE FOLLOWING RESTRICTIONS: 

I. PREPRINTS & CONTRACT REPORTS 

Jiil' Announce in STAR (no limitations on availilbility) 

o Release by Originating Office Only 

II. WORKING PAPERS (Operational Documents) & CONTRACT REPORTS 

A. 0 Announce in CSTAR (distribution limited as indicated) 

1. 0 U. S. Government Agencies and Contractors Only 

2. 0 U. S. Government Agencies Only 

3. 0 NASA and NASA contractors Only 

B. 0 Release by Originating Office Only 

III. PATENT COUNSEL REVIEW 

A. GSFC Originated Documents 

1. 0 This document discloses potentially patentab!e 

subject matter (a new and useful process, product, 

mechancial and electrical arrangement of parts 

or composition of matter) and is to be reviewed 

by Patent Counsel. 

Preprints will be subsequently published 

o As a j\)urnal article 

o As a formal NASA report 

o Presented at a professional meeting 

2. ~ This document does not disclose potentially 

patentable subject matter. 

Patent .Counsel Review: _______________ _ 

B. Contract Reports (to the best of the T.O.'s knowledge) 

1. 0 This document should be reviewed by Patent Counsel. 

Patent Counsel Review: __________ -7'4'I'-~=---

Requester's Name 

Code 

GSFC 25-13 (6/73) 

GRAPHIC SERVICES BRANCH 



I 
I 

I 

t 
1 

1 
... :;:~ 

1. Report Ho. 2. Government Accession Ho. 

4. Title and Subtitle 

Final Report ATS-5 Ranging Receiver and 
L-Band Experiment, Volume IT 

7. Authar(s) 

9. Performing Organization Hame zlnd Addl'e~s 

Westinghouse Electric Corporation 
Defense and Electronic Systems Center 
Baltimore, Maryland 21203 

3. Recipi.mt's Catalog Ho. 

5. Report Date 

6. Performing Organization Code 

8. Performing Organization Report Ho. 

10. Work Unit Ho. 

11. Contract or Grant No. 

NAS5-21598 
13. Type of Report and Period Covered 

~~--~~~--~--~~~------------------------4 12. Sponsoring Agency Home and Address Final 

NASA/GSFC 
Greenbelt, Maryland 

15. Supplementary Hotes 

16. Abstract 

14. Sponsoring Agency Code 

This volume contains the results of ranging and position location 
experiments which were performed at the NASA Application Technology 
Satellite ground station at Mojave California. 

Four separate types of experiments are described and the results 
reported. The data handling and processing technique is also described. 
The four types of experiments performed are (1) Simultaneous C-band 
and L-band ranging to ATS-5, (2) Simultaneous C-band and VHF 
ranging, (3) Simultaneous 24-hour ranging and (4) Posttion location 
using ATS-l, ATS-3, and ATS-5. 

Volume I of this report describes the ATS-5 Ranging Re~eiver 
which was used in performing the experiment, as well as some of the 
preliminary results. 

17. Key Words (Selected. by Author{s)) 18. Distribution Statement 
~ ATS-5 Ranging Receiver 

~ 
L":Band Ranging 

'\ '\ L 3 4 S 6' VHF Ranging 
$~ ~ ?~ Position Location 
~ 4UD ""l v tP,' !!! '1 19.", ~ 1'f' Security Classif. (of this report) 20. Security Classif. (of this page) 21. Ho. of Pages 

N 1t4,~JfIl(;'~/Ir."'1 ~~l ~ 127 
~ 1~()lJ or"')(:l (:-D h.); l . ' 
, Cj- 'r /}''4;011.1)) c:;:tor sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Vi~ginia:?2151. 
~~ ~r ~i ~ 

C"2" ~~;" 
c"!JOJ61J~\.i.\~ , 

22. Price 

':,. 



L 

, 
~ 

( 
< , • 

\·,1 

,', ,I 

:' 

SECTION 1 

SECTION 2 

SECTION 3 

SECTION 4 

TABLE OF CONTENTS 

, . 
'J; , 

lir2h 1! 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Page 

1.1 

1.1 General ...................... ' .... It • •• 1.1 

SUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2.1 

DA TA PROC ESSING ....................•..•.... 

3. 1 Received Ranging Data ................••.. 

3.1 

~,.1 

3.2 Data Processing Flow. • . . . . . . . . . . . . • . . . . .. 3.5 

3.2.1 Data Processing Step I - Paper Tape 
to Magnetic Tape ............••.. 3.5 

3.2.2 Data Processing Step II - Raw D!:\.ta 
Magnetic Tape to Corrected Data 
Master Tape ..•......•....•.... 3.5 

3.2.3 Data Processing Step III - Master 
Magnetic Tape to Programmed 
Computation Outputs ......... ' .... , 3.7 

L-BAND RANGING EXPERIMENTS .•................ 4. 0 

4.1 Simultaneous C-Band and IJ-Band Ranging 

4.2 

Experiment .........•..............•.. 4. 1 

4.1.1 

4.1. 2 

4.1. 3 

4.1. 4 

4.1. 5 

Obj ective . . . . . . . . . . • , . . . . . . . . .. 4. 1 

Test Description ......... ~ ...... . 

Experimental Test Results ....•.•... 

Analysis ..........,........... 

Conclusions ...... .. :........... . 
/' 

Simultaneous O.i;Band and VHF Flanging Experiment. 
!I 

4.2.1 Objective ..•.......•..•....... 

4.2.2 

4.2.3 

4.2.4 

4.2.5 

Test Description •.•......•.. 0 •••• 

Experimental Test Results •...•..•.. 

'Analysis: ......... ............ . 

Conclusions . . ". . . . o. . . . . . o. . . . . . . . 

iii 

4.1 

4.5 

4.16 

4.18 

4.20 

4.20 

4.20 

4.23 

4. 30 

4.32 



1-, . .,.;'-;'.'1 
.>~,~{, . 

L 

J! 

I 

SECTION 5 

SECTION 6 

4.3 

4.4 

TABLE OF CONTENTS (Continued) 

Simultaneous 24-Houl' Ranging 

4.3.1 Objective ..... 

4.3.2 

4.3 .. 3 

4.3.4 

4.3.5 

Test Description. . 

Experimental Test Results 

Analysis 

Conclusions . . . . . . . 

Position Location by Ranging to Two Satellites 

4.4.1 Objective ....... . 

4.4.2 

4.4.3 

4.4.4 

4.4.5 

Test Description. . . . . 

Experimental \"est Results 

Analysis 

Conclusions 

STA TISTICAL ANALYSIS OF RANGING ERRORS . 

5.1 

5.2 

5.3 

5.4 

Statistical Information Obtained from Ranging 
Measurements . . . . . . . . . . . . . 

Methods of Obtaining the Desired Statistical 
Information from the Ranging Errors 

Analysis of Samples of Actual Ranging Data . 

5.3.1 Example 1: Typical Results - Run of 
4/15/71 at 1,000 Watts on L-Band . 

5.3.2 

5.3.3 

Example 2: A Case vVhere the L-Band 
C/N is Low at Both'the"Spacecraft 
and the Receiving Ground Terminal. 

Example 3: Mode 1 Operation, Where 
the 20 kHz Range Tone in the L-band 
Equipment is not Coherently Related 
to the Range Tone in the A TSR -
C-Band Equipment ...... . 

Conclusion Concerning Statistics of Ranging 
Errors .. , .......... . 

MOJAVE GROUND STATION ANTENNA LAYOUT 

6. 1 Simultaneous Ranging . . . . . . . . 

6.1. 1 L-Bandand C-Bl:md toATS-5 

, 6 .1.~ C-Band and VHF to ATS-l 

6.1. 3 C-Band and VHF to ATS-3 

iv 

~ .~ 

'" f _i w~-r~_ 1 % 

~Page 

4~33 

f.33 

4,33 

4.34 

4.38 

4.40 

4.41 

4.41 

4.41 

4.47 

4.51 

4:.55/56 

5.1 

5.1 

5.2 

5.6 

5.6 

. . 5.14 

5.21 

5.261 

6.1 

6.1 

6.1 

6.4 

. 6.4 



J 

6.2 

GLOSSARY ...... . 

F • 

T ABLE OF CONTENTS (Continued) 

Position Location. . . . . . . . . . 

6.2.1 

6.2.2 

C-Band and L-Band Ranging 

C-Band and VHF Ranging 

v 

, -. 
\jo i i. 

JL..rk~'-:.,.. 1: 

Page 

6.4 

6.4 

6.7 

G.1/2 



i. -
." 
j 

Figup~ 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

3.10 

3.11 

4.1A 

4.1B 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

4.10 

4.11 

4.12 

LIST OF ILLUSTRATIONS 

L-Band Paper Tape Data Format . . . . . . . . . . 

C-Band Paper Tape Data Format . . . . . . . . . . 

Data Processing Step I - Paper Tape to Magnetic Tape 

Data Processing Step II - Raw Data Magmetic Tape to 
Corrected Data Master Tape ......... . 

Data Processing Step III - Master Magnetic Tape to 
Programmed Computation Outputs. 

Typical Corrected Data Plot . . . . . . . . . . . 

Typical Smoothed Range Plot. . . . . . . . . . . 

Typical Position Location Using Measured Range Data 
for ATS-l and ATS-5 ............ . 

Position Location Using Ephemeris Range Data for 
ATS-1 and ATS-5 .......... . 

ATS-5IrBand and Ephemeris Range Data ... . 

ATS-1 C-·]Band and Ephemeris Range Data ... . 

. . 

Simulta.neousC- and L-Band Ranging Block Diagram (Mode 5) 

Simultameous C- and L-Band Ranging Block Diagram (Mode 1) 

Corrected Data Plot: 1,00.0 Watts. 

Smoothed Range Plot: 1,000 Watts 

Corrected Data Plot: 16 Watts 

Smoothed Ra.nge Plot: 16 Watts 

Page 

3.2 

3.3 

3.6 

3.9 

3.10 

3 l3 

3.14 

3.15 

3.16 

3.17 

3.18 

4.3 

4.4 

4.8 

4.9 

4.10 

4.11 

Corrected Data Plot: 8 Watts. . ~/. 4.12 

Smoothed Range Plot: 8 Watts 

Qorrected Data Plot: 4 Watts . 

Smoothed Ra'llge Pilot: 4 vVatts 

SiJ:nultaneous C-BS4nd and VHF Ranging Block Diagram 

Diurnal Vari!:l.tion of the VHF Ranging Data as Compared 
to the C-Band Ranging Data. .' ......... . 

Comparison of C-BandandVHF Ranging Data to Ephemeris 
Ranging Data ....... '. .. . . . . . . . " . 

vi 

4.13 

4.14 

4.15 

4.21 

4.26 

4.27 

~~ ~ 
.i~:~ .~ 

.1 

r~ 

~ 

. 



! ' 

t{ '.'" : ,~ 
\' 
f, 

. ~\ 

1 5~ ",:. 
- ,~. -

:t 

J 

Figure 

4.13 

4.14 

4.15 

4.16 

4.17 

4.18 

4.19 

4.20 

4.21 

4.22 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

5.10 

5.11 

5.12 

LIST OF ILLUSTRATIONS (Continued) 

Corrected Data Plot: Simultaneous C-Band and VHF Ranging 

Smoothed Range Plot: Simultaneous C-Band and VHF 
Ranging .................. . 

Comparison of L-Band and C-Band Ranging Data 
to Ephemeris Ranging Data . . . • . . . . . . 

DiurIlal Variation of the L-Band Ranging Data as 
Compared to the C-Band Ranging Data . . . . . 

Position Location Land C-Band Block Diagram . 

Position Location C-Band and VHF Block Diagram . 

Geometry for Position Location . . . . . . . . . 

Position Location Using Measured Range Data for ATS-1 
(VHF) and ATS-3 (C-Band) . , . . . . . . . . . . . 

Position Location Using Measured Range Data for A TS-l 
(C-Bann) and ATS-3 (VHF) . . . . . . . . . . . . . 

Position Location Using Ephemeris Range Data for ATS-1 
and ATS-3 .................... . 

Autocorrelation Functions of C-Band and L-Band Ranging 
Errors (Example 1). . . . . . . .. . . . . . . . . . 

Crosscorrelation Function of C-Band and L-Band Ranging 
Errors (Example 1). . . . . . . . . . . . . . . 

C-Band Range Versus L-Band Range (Example 1). . 

Probability Densities ofC-Band and .L-Band Ranging 
Errors (Example 1). . . . . . . . . . . . . . . 

Cumulative Distributions of C-Band and L-Band Ranging 
Errors ..................... . 

Autocorrelation Functions of C-Band and L-Band Ranging 
Errors (Example 2) .••.••.•.••..••. 

Crosscorrelation Function of C-,Band, with X-Band Ranging 
Errors (Example 2). . . .. . . . . . . . . . . . 

C-Band Range VersusL-Band Range (Example 2) .. 

Probability Densities of C'-Band 'and L-Band Ranging 
Errors (Example 2). ." . . . . . . . . . . 

Cumulative Distribution~,! of C-Band and L-Baud 
Rang~:ng ErrorS (Example 2). . . . . . . . . 

.. - - , .. 
Autocor:relatiQ~, Functions of C-Band and L-Band :aa~llgiug 
Err~rs (Exam,ple:",3:h . . . . . . . . . . . . .... 'c', '''~ 

,.~~p'r6~~correlationrm.mctions of C-Band and L-Band Ranging· 
,Errors (Ex:ample ,3). . . . . . . . . . . . . .. . 

vii 

J "" 
",t. . 

hrE:;:;.. 1! 

Page 

4.28 

4.29 

4.36 

4.37 

4.42 

4.43 

4.45 

4.48 

4.49 

4.54 

5.7 

5.8 

5.9 

5.10 

5.11 

5.15 

5.16 

5.17 

5.18 

5 .. 19 

5.23 

5.24 

.J ., 



L 

: 

~ ~ 
I 
, 
\ 

i 

i 

f 
~ 

f 

;,. 

., 
:' 1 

"j 

;;'~ , 

L 
~. 

Fi~re 

5,13 

5.14 

5.15 

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

Table 

3.1 

4.1 

·4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

..I '~ 

-" ' 
,j~~::':.. I! 

LIST OF ILLUSTRATIONS (Continued) 

C-Band Range Versus L-Band Range (Example 3) 

Probability Densities of C-Band and L-Band Ranging 
Errors (Example 3). . . . . . . . . . . . . . . 

Cumulative Distribution of C-Band and L-Band Ranging 
Errors (Example 3). . . . . . . . . . . . . . . 

Mojave Ground Station Antenna Layout . . . . . . 

Simultaneous L-Band and C-Band Ranging to ATS-5 

Simultaneous C-Band and VHF Ranging to ATS-1 .. 

Page 

5.25 

5.27 

5 .. 28 

6.2 

6.3 

6.5 

Simultaneous C-Band and VHF Ranging to A TS-3. . 6.6 

Position Location: C-Band to ATS-l and L-Band to ATS-5. 6.8 

Position Location: C-Band to ATS-1 and VHF to ATS-3 6.9 

Position Location: C-Band to ATS-3 and VHF to ATS-1 6.10 

LIST OF TABL~S 

Master Magnetic Tape Format .......... . 

Simultaneous Ranging Data on ATS-5 (Mode 5 Operation). 

Simultaneous Ranging Data on ATS-5 (Mode 1 Operation) 

Simultaneous C-Band and VHf Ranging to ATS-3. . . . 

Simultaneous C-Band and VHF Ranging to ATS-1. . . . 

24-Hour Simultaneous l3-nd Sequential Ranging Data for ATS-5 

Summary of Position Location Results 

Position Location Corrections due to Antenna Separations . 

Meas~rement Dates and Ephemeris Epochs . .. . . . . 

viii 

Page 

3.8 

4.6 

4.7 

4.24 

4.25 

4.35 

4.50 

4.52 

4.53 



SECTION 1 

Il\kTRODUCTION 

1.1 GENERAL 

The National Aeronautics and Space Administration, Goddard Space Flight 

Center (NASA/GSFC) awarded the Westinghouse Electric Corporation, Baltimore, 

Md. a contract, early in 1971, to perform data reduction and analysis on L-band 

ranging and position location data. This volume (Volume II) presents the results of 

the data reduction and analysis of data obtained at the NASA Mojave, CaHfornia, 

tracking station through June of 1971. Volume I of this publication covers the work 

performed on the L-band ranging and position location experiment equipment which 

was developed, designed, fabricated, and installed at the Mojave station. Volume I 

also includes some of the results of data collected during the initial phase of the 

experiment checkout at Mojave. The ranging equipment was installed at Mojave 

in January of 1971 preliminary ranging experiments were conducted over the next 

two months. These experiments included simultaneous C-band and L-band ranging to 

ATS-5, as well as L-band ranging to ATS-5 concurrent with C-band ranging to ATS-1. 

The two satellite rangings provided position location data. 

Upon completion of the preliminary experiment checkout phase of the 

hardware under the previous contract, this data reduction and analysis contract was 

utilized to gather, reduce, and analyze the experimental data. All data collected, 

including that covered in Volume I, is included in Volume n. 
Performed primarily on an individual experiment basis, the data reduction 

and analysis effort is presented in this document in like manner. There are four 

primary types of experiments performed: (1) Simultaneous C-band and L-band 

ranging to ATS-5, (2) Simultaneous C-band and VHF ranging to ATS-l and ATS-3, 

(3) Simultaneous 24-)-vi>ur ranging, and (4) Position location using ATS-5 and 

ATS-l or ATS-3. \ t 

For the P(lt~J6S~?!.:::this report, the simultaneous C-band ranging data is 

used as the~tandard, in that it is the best range'inIormation available for the 
. )"- " . - . ' 

experiment. Thus', L-bandar'id VnF measurements are compared to the a-band 
" . -.~! . -:;; ~ - - . ~ 

measurement toestablishmeas~}rement!lccuracy. 
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The major objectives of the e:h.'Periments are: (1) determine the ranging 

accuracy that could be achieved at L-band frequenci~~, (2) evaluate the propagation 

effects on L-band ranging signals, and (3) evaluate dItrn31 propagation effects on 

L-band ranging signals at different latitudes. 

Data for this report was obtained at one latitude, that being 35
0 N for the 

Mojave station. Only limited diurnal data has been obtained for the report. 

ACKNOWLEDGMENTS . 
The authors wish to aclmowledge those who have contributed to this 

program in various ways both at Westinghouse and the Goddard Space Flight Center. 

Special thanks are extended to the Mojave ground station p erso1l11el and 

Mr. C. N. Smith, NASA/GSFC principal investigator, for his counsel and assistatlce 

throughout the experimental program and for his discerning review of this report. 
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SECTION 2 

SUMMARY 

The major objectives of the variotts experiments listed in Section 1 have 

been successfully carried out, except for the determination of. L-band propagation 

effects at more than one latitude. The results of these experiments are briefly 

summarized in this section.De~iled b1escriptions and analyses are presented in 

Section 4 of this report. 

L-band range measurements to A TS-5 from the Mojave station agreed 

quite well with simultaneous C-band measurements from the same station. When 

equipment biases and geometrical effects were taken into consideration, range 

measured by the L-band system differed from that measured by the C-band system 

on the order of ten meters for a: transmitted L-band power level greater than eight 

watts. An extremely accurate and stable frequency sourC8 is required to reduce 

the range difference much further. Fluctuations in the L-band range data due to 

thermal noise and equipment jitter were comparable to those of the G-band data at 

the higher transmitted L-band power levels. 

VHF range measurements to either ATS-l ot' A TS-3 do not agree well with 

simultaneous C-bandmeaswrements.This is expected because the ionosphere has a 

large effect on VHF propagation. During 10ca16~;ii'~~JrJ' -VHF range exceeded C-band 

range by as much as 1180 meters; while at night,the d~fference dropped to around 100 

meter~, in accord.ance with tb.e Imown diurnal variation in ionospheric electron density. 

For accurate VHF ranging and positio~ location, therefore, it is necessary to correct 

the range data, which requires knowledge of the ionospheric electron density at the 

time range measurements are made. 

Simultaneous L-and C-band range measurements to A TS-5 were performed 

over a 24-hour time trlterval to investigate diurnal propagation effects. Again, when 

equipment biases and geometrical effects were taken into consideration, the difference 

betweenL~band and C-band range w:as less than ten meters during the night-time low 
t.l . 

II " 

in electron density . However; during local daylight; when one would expect L-band 

range to exceed C-band range, tbeopposite was observed. No explanation for this 
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apparent anomaly has been advanced, to date. Nighttime measurements compared 

quite favorably, as expected. Several more such experiments should be performed 

to reach a definite conclusion. 

The difference between measured L- or C-band range and calculated range 

extracted from satellite ephemeris exhibits a cyclic variation with a 24-hour period. 

This behavior seems to be characteristic of most results of the Goddard orbit 

determination and prediction program. It is believed to be due to the fact that not 

all orbit elements can be calculated with equal precision from range and range rate 

measl-lrements alone. The difference between predicted and measured range depends 

on the elapsed time between the ephemeris epoch and the date on which range 

measurements are made, as well as the time of day measurements are made. When 

this elapsed time is less than about two weeks, the difference in range can be as 

much as one or two kilometers. This difference rapidly incree.,ses as the elapsed 

time increases beyond two weeks. 

A capability fol' determining the location of a ground station by ranging 

from the station to two satellites hll: been demonstr.ated at C-band, L-band and VHF. 

Accuracy of position location is limited mainly by the existing orbit determination 

program. Distance between the actual station position and its calculated position is 

on the order of one kilometer when correctly updated versions of the present orbit 
"'I 

program are used. The pOSition location procedure is capable of accuracies on the 

order of ten~ of meters if more accurate satellite ephemeris can be obtained and when 

equipment biases and propagation effects are compensated. Accuracy of station 

location is only slightly sensitive to the random fluctuations that occur,,in the ranging 
J, 

data and to the geometrical arrangement of the station and two satellites. 

The data gathered during three experiment periods were investigated to 

determine if L-band range measurement errors contained a periodic component ~_t the 

spin rate of ATS-5, if range errors were being caused by propagation anomalies, and 
the statistical distributions of the errors. It was found that in each case errors at 

C-band were not correlated with errors atL -band, indicating that common propagation 

anomalies over a3-minute period were not causing the range errors. There was no 

cyclic, unexplainable periodic component in either range error signal. This shows 

that the spinning of A TS-5 is not contributing a significant component to the range errors, 

at either ranging frequency. The statistical distributions of errors about the errOl; 

biases are very nearly "normal" mdicating that errorS are probably being caus,ed by:, 

sources such as thermal noise effects in the phase comparison sections of't:h~ ranging 
"?/< 

receivers. 
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'I'he test intervals chosen for analysis are representative of three test 

conditions, one with a high signal to ~()ise ratio at the spacecraft, one where the 

signal to noise ratio is low, and one for operation with independent ranging tone 

sources for the two separate ranging systems. The latter case is refer-reel to as 

mode 1 in the body of this report. Aside from the increased st'lndard deviation, 

reducing the signal to noise ratio at the spacecraft does not change the bias stati.stics 

or correlations of errors. However, Mode 1 operation does change the range bias 

without changing the error distributions or correlation functions. This shows that 

the change in range bias is probably caused by a deterministic source, such as the 

generation of false lanes or ambiguous zero set of the L-band ranging receiver. 
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SECTION 3 

DATA PROCESSING 

3. 1 RECEIVED RANGING DATA 

For this L-band experiment the ranging test results were automatically 

recorded on punched paper tapes at the Mojave ground station, using the A TS-5 

ranging receiver which is discussed in detail in Volume I of this report. The 

L-band ranging data was placed on an ASCII coded eight-level paper tape by the 

ATS-5 ranging receiver while the C-band ranging data was placed on a standard five­

level BAUDOT coded paper tape by the ATSR C-band ranging system. In addition, 

sUPf?orting dat~. concerning system parameters and signal characteristics was 

sinmltaneous(y. recorded on strip charts. After recording this data, the ground 

station did: no additional processing of these paper tapes. The tapes in their raw 

data format were mailed to the Westinghollse Defense and Electroni'c Systems 

Center, Baltimore, Maryland for further processing. 

The eight-level L-band paper tape is illustrated in figure 3. 1 (A) and the 

format for placi~g the ranging data on the tape is shown in figure 3. 1 (B). One line 

of data consists of 14 line characters. The first character is the line feed (L/F) 

or start character for this one line of data. CharacterlS 2 through 7 are used to 

identify the time-of-day (TOD) in which this one ranging measurement was made. 

Character 8 identifies tp.e tone frequency (T) used for this measurement (H is for the 

20 kHz measuring frequellcyand L denotes the 4 kHz frequency). The character;:: . . ,t 

~through 13 are the values for the range measurement. Character 9i8 for 100 usec, 'j 
ch~racter 10. for 10 usec, character 11 for 1 usec, .. character 12 for 0.1 usec (100 

nsec) and character 13 for 0.01 usec (10 nsec). This gives a range reading of 

XXX. XX micro-seconds, which is a one-way range reading. For the 20 kHz (H) 

measuring frequency this reading will vary from 000.00 to 024.99 usec; while for the 

4 kHz (L) measuring frequency the reading will,vary from 000.00 to 124.99 usec. 

The 14th character in the data line is the carriage return (C/l1) which resets the 

printout carriage for the next <;lata line. 
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Line Character Numbers 

r~------'----------~'--------------~' 

(A) 

Sprocket 
Holes 

1 2 
0 0 

0 0 

0 0 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 
0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 " 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

I I 
{ L 
I I 

0 0 0 0 0 0 0 0 0 0 0 0 

( 
11 
I 
I 
I J 

'----------____ ~~~----------------JA~----------------__ ,,~--------------------~. 
Line Lines 

~~--------------~~~--------------~) 

(B) 

Line 

L/F 
HR 
Min 

Repeat 

Time -------------.~ 

Line Character Number 

(~--------------------------------~'-----------------------------~, 

11:111111111111:1 
I L/F I HRIO HRl Min10 MinI SeclO Sec1 I T R R R R R I CIR 

\ v ) \._ J 

Time of Day Data Range Data 

Time ---------1 ••. 
Line Feed (Start) 
Hours (00-23) 
Minutes (00-59) 
Seconds (00-59) 

T Tone C&:ie (H "'.20 kHz or L'=' 4 kHz) 
Range (One-W:).y) (000.00 - 124. 99'Microseconds) R 

CIR Carriage Return . 

.. ('NOTE: Data is punched in standard AcsiI 8-level code. 
There are 14 characters. in each line to be transmitted. serially. 

Figure 3. lL-Band Paper Tape Data Format 
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_ _ _ ..:'!r-_ ------- ---.. ~u 

(A 
~ - - - - v -. -- -- .. - .... -- -- -- -- _. --
0 0 0 0 0 0 0 0 0 0 0 '( 0 ) 
0 0 0 0 o 0 0 0 0 0 0 7f 0 } o 
0 0 0 0 0 0 0 0 0 o .. 
0 0 0 0 0 0 0 0 0 0 0 0 /) 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 , 0 

o 
o 
o 

~ I 

One lJ.ne 
I.. ..... J 

1m R 

n 

STA Cl 
LiDe 

~) 11 I l1111L I I1ulllL nl11111 ~ 1 I I t lJ..J 1 • • I 
u.oe I C/R L/ F F/S XXXXX . Q/O RRR-aBRBR HiRiiRR roo 0 HJL KR.... .... Sec See 'I 

1 I I I " 100 10 1 --- -.0 1 10 1 10 1 

I . I I I I 
I . I I I 

iT T T rl i T r~R(r~r 

'" 

C2 

1 Data 

lcal.ioo Data 

1 1 
eo 61 62 IlII 70 77 78 7t 110 81 82 M " .1 1M 

Tim 

c / R Carriage Return R Rance (TWo-Way) KR 
L/ F LlDe F eed (Start) (000000.00-12499 •• fit MJcro ~) 0 
FIB Fipt'eShm R Range Rate Y AIa_ IWIUCIIl (Sip ud Four Decimal Dl&ita) 
X AlIl_ l'oelUon (Sign and Four Decimal DigilAl Sec. Seconda (00-59) 

or Five Decimal Digita) Mill. MlDutea (00-51) SAT QIo QuaUty Data (Spece lDd.Icales aU Loops Locked) C2 Sample Rata (0-4) STA 
1..3 Spare (0- ') Cl 
Col 

igure 3. -Band Paper Tap or mat -
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The C-band range measurements were made using the standard ATSR 

ranging system. The data output from this system is a five-level paper tape as 

illustrated in figure 3.2 (A) with the data format shown in figure 3.2 (B). Since 

this is the standard A TSR ranging format, there are many characters of information 

in this format in addition to the C-band range data which are not needed for this 

experiment. In the data format as shown, there are two lines of 52 characters each, 

in a complete set of data. There are two range measurements for each line of data 

and four range measurements for each TOD printout or repeat. The TOD data is 

placed on line characters 30 through 35, and the range data is placed on line characters 

10 through 17, 37 through 44, 62 through 69, and 89 through 96. The range rate data 

shov.rn in the format is not used in this experiment. The ATSR range readings are 

XXX, XXX. XX microseconds and will vary from 000,000.00 to 124,999.99 usec. 

This is, a two-way range reading in contrast to the one-way range reading for the L­

band system. 

The C-band ranging measurements are taken at one-second intervals. 

However, the L-band ranging measurements are gated by-the spin of the ATS-5 

satellite which has a period of approximately 780 msec. One ranging reading is taken 

during each spin period providing four readings within three seconds. Thus, there 

will be two readings for the same second approximately every three seconds. As part 

of the data processing program, later these two readings are averaged for a single 

reading for that second. 

In this discussion it was stated that the C-band data was placed on the 5-

level paper tape and the L-banddata was placed on the 8· 'level paper tape. This is the 

case for the major portion of this experiment which was measuring L-band and C-band 

ranging. However, for another part of the experiment, ranging measurements were 

made on C-band and VHF. In this instance the C-band measurements were switched 

from the ATSR ranging machine to the GSFC ranging machine, thereby, placing the 

C-band data on the 8-level paper tape. The VHF information was consequently placed 

on the 5-level paper tape. This change has b.een properly indicated in the data 

. processing of these paper tapes.-
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3.2 

3.2.1 

DATA PROCESSING FLOW 

Data Processing Step I - Paper Tape to Magnetic Tape 

The first step in processing the field measurements is to transfer the data 

from the paper tapes to magnetic tapes. Figure 3. 3 depicts step I of this data 

processing. As shown, the SDS-910 computer is used to store both the C-band and the 

L-band data on separate mag tapes. For either type of data a file record header is 

first generated containing: month, day, year of the test; the test transmitted power; 

and any pertinent test conditions. After the header, the data is then transferred to 

this tape. For the L-band measurements the data transferred is: the test tone used 

(H or L); the hour, minute, and second (TOD) of the data point, and the range data in 

mmoseconds. For the C-band measurements the data transferred is: the day, hour, 

minute, and second (TOD) for each dat~. point, and the range data in nanoseconds. 

Since the C-band paper tape format contains only one TOD reference for every four 

range data points, the computer in this transfer process generates the three othar 

missing TOD references and places them into the mag tape format with the appropriate 

data point. No other calculations or manipulations of the raw measured data is 

performed during this first processing step. 

Before these separate mag tapes can be further processed, it is necessary 

to obtain a mag tape from NASA/GSFG containing per second epherneris data over the 

measurement time intervals. for the ATS-5 satellite in reference to the Mojave 

station. For the simultaneous L-band and C-band ranging (to ATS-5) portion of this 

experiment only the mag tape data for the A TS-5 satellite is required. For 

simultaneous C-band and VHF ranging (to eithel: ATS-1Dr ATS-3) magnetic tape data 
" 

is required for only the particular sp~cecraft/ised. However, for the position 
.' .:,.~..;::,:Y ._" . .-...:,. 

locat.ion portion of this experiment since the C-banci ranging was performed on the 

ATS-l satellite and the L-band rangii~g used the ATS-5 satellite, ephemeris mag 

tapes for both satellites are required. 

3.2.2 Data Processing Step II - Raw Data Magnetic Tape to Corrected Data 
Master Tape 

This stell in the range data processing converts the measured data points, 

in nanoseconds, tP;~hsolute one-way range values in meters. This corrected data 

of L-band rangiI~~ C ":band ranging and ephemeriS is then time coordinated and 

simultaneously stored ana Single master magnetic ta.p~. This step II is shown in 
/' 

figure 3.4. (:\.\, 
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CD 
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.~ ,.t 

Paperq'rapes 
JRiiwDa.ta) 
~(F:rom Mojave) 

,"-. 
\.,l 

'~t-r-: -

. Header Information 

* C-Band 0. 
(5-1evel) '" 

"-.-.-~-

-~".~- . 

" VHF Band o-.... ~ • I SDS-910 
Computer (5'-Level) / 

* ". 
L-Band r/ 

(S-level) 

,~ 

.. ~ --""' .. .... 

,/J C-Band 
" (Raw Data) 

/ 
/ 

• c? --.--0 VHF Band 
" (Raw Data) 

~ 
'0 L-Band 

(Raw Data 

q {ATS-5 * 
MagTape '. Ephemeris 
(From GSFC) Range Data 

ATS-5 
o .. 0 Ephe:rp.eris 

.. { ** . . ATS-l 
M.' ag Tape .' Ephemeris 0- ______ ... ___ _ 

(From GSFC) Range Data 

ATS-l 
- - - -0 Ephemeris 

Mag Tapes 

.." 

* For Rangihg with C-Band and VHF: 
a. . VHF on 5-1evel paper tape 

**Additional Ephemeris Range Data Required for 
Position l.Dcation Experiment 

. b. C -:-Band on S-:-level p~lper tape . 
c. ATS~l or ATS-3 Ephemeris. Data instead of ATS-5 

Figure 3.3 Data Processing Step I - Pl,lper Tl,lpe to Magnetic Tape 
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The first operation by the Univac 1108 computer resolves the ambiguity* 

of the C-band ranging data and places this data refl.ding in its proper lane. For the 

C-band measurements, this le.ilewidth is 125,000 usee, (approximately 20,200 

N. mUes) thereby placing the two way range reading in either the 2nd or 3rd lane. 

Next, this resultant two way range value in microseconds is used to compute the one­

way corrected range output in meter.'). 

In the L-barrl measurements, as previously stated, approximately every 

three sec ends there will be two data readings for the same second. The first step in 

resolving the L-band data is to average these two readings when they occur to give a 

single reading for each semnd. The next step is the ambigl,lity resolution of the 

L-band data. Since the width of the lan,e for this L-band ranging system is only 50 

usee, there will be approximately 5000 lanes to be added to the measured data. The 

correct number of lanes is determined from the previously corrected C-band range 

values. Since the L-band measurements are one-way readings, the one-way C-band 

calculation is used. After adding the ranging readings to the proper lane calculation, 

the one-way range is converted to ;meters. 
At this point the L-band and C-band raw data has been corrected and is 

ready to be placed on the master magnetic tape, along with the appropriate ephemeris 

data. These three inputs are time coordinated and stored in the format shown in 

table 3. 1. This magnetic tape may now be used to perform any of the computations of 

simultaneous ran~ing in the Data Processing Step III which follows. 

The master magnetic tape for the position location experiment requires the 

same calculations and data as described above for L-·band and C-band. However, in 

this case the L-band ambiguities have to be resolved a.gainst the ephemeris data since 

in this case the C-band ranging is to a different satellite. Also, as shown in figure 3.4, 

ephemeris data for both satellites must be fed in to be stored on the master. magnetic 

tape. 

3.2.3 Data Processing Step III - Master Magne,tic Tape to Programmed 
Computation Outputs 

This Step utilizes the master magnetic tape created from the raw data and 

epheineris data to perform the analysis computations. Figure 3. 5 shows Step III. 

The data probessing programs were developed to provide an efficient method of process­

ingthe large amount of data obtained from these tests, and to aid the analyst in 

determining the validity of the test results. The ;main processing program contains a 

n:umber of sub-progr_anJ-sWhich perform various computations. Data generated _on the 

computer and plotter falls into one of two general classes: 

*See (Hossary 
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Word 41= 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

+ 13" 

1.4 

17 

18 

19 

20 

21 

22 

23 

24 

! 
23 + 

4/:points 

! 
+ 4/: points 

++mts 
900 

, , 
'J. . 

t.t~~: .. ~. a! 

TABLE 3. 1 MASTER MAGNETIC TAPE FORMAT 

- Digits or 
Contents Char/Word Format Example 

41= Points, 3 digits Binary 127 

L-band tone freq. (kHz) 2 digits Binary 20 

Month 

I 
2 digits Binary 2 

I Day Test Date '2 digits Binary 17 2/17/ 

Year 2 digits Binary 71 

71 

C-band Xmtr pwr. 4 digits Binary 100011000. 

C-balld Xmtr pwr. 2 digits Binary 5 Watts 
5 

L-band Xmtr pwr. 4 digits Binary 52 
1

52
.

5 

L-b3lld Xmtr pwr. 2 digits Binary 5 Watts 

C-band Test ATS-5 
Description, etc. 6 charac BCD Mode-5 

Hec. in Ma n. 

L-band Test ATS-1 
Description, etc. 6 charac BCD Mode 1 

HTC locked 

Hour 

I 
2 digits Binary 19 

I Minute start Time 2 digits Binary 22 19-22 

Second 2 digits Binar,y 1 

-01 

Hour 

I 
2 digits Binary 19 

I Minute End Time 2 digits Binary 25 19-25 

Second .2 digits Binary 2 

-02 

C-band Range in 8 digits 
Meters I·· B" 37212319 . mary 

( .. ) 

meters 

L-band Range in 8 digits 
Meters Binary 37212320 

meters 

Ephemeris range 8 digits . 

predictions in meters ,) Binary 37213320 
meters 

Zeroes 
000000 

+ OOO()OO 
>:.~ -
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.-:.; 

Mag Tapes 

,:,. 

.. :, 

C-Band} 
(Raw Data) 

" 

-..., 

L-Band '­
(Raw Data)} 

-

ATS-5 } 
Ephemeris 
Range Data 

ATS-l }* 
EPhemeriS. 
Range Data' 

... --.. 

.. 
• 

... 
• 

-+-

.. .. 
Univac 

1108 
Computer 

... .. 

-

4 

Master 
Mag Tape 

out of 
ster Tape 

L-Band Range (Corrected) 

C-Band Range (Corrected) 

A TS-5 Ephemeris Range 

A TS-l Ephemeris Range* 

*Required only for Position Location Experiment 

Figure 3.4 Data Processing step II - Raw Data Magnetic Tape to Corrected Data Master Tape 
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Master 
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Program 
c 

~, 

Univac 
1108 

Computer ... 
r 

.-----;,--~--., ............ ' ... ~ ..... >-~-- ...... -.~.'---:~.~,~!.-...-­
,s 

Mag Tape 
Off-Line C ale omp 

-~-

Programmed Computation Plots ... 763 .. ~ ... .. 
Plotter 

( 

Programmed Computation Print-Out 

Programmed Computations: 
A. Simultarieous Ranging Experiment B. Position Location Experiment 

1. Corrected Data Plot 1. Position Location Scatter Plot 
2. Smoothed Range Data Plot 
3. Autocorrelation 
4. Crosscorrelation 
5. Scatter Plot 
6. Probability Density Distribution 
7. Cumulative Distribution 

~; Figure 3. 5 Data Processing Step III - Master Mag'netic Tape to Progran)med Computation Outputs 
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1. Real time ranging data from ephemeris inputs, L-band ranging 

measurements, and C-band ranging measurements. The plots generated from these 

processing programs are: 

a. Corrected Data Plot 

L-band range versus time 

C-band range versus time 

Ephemeris range versus time 

b. Smoothed Range Data Plot 

L-band range versus time 

C-band range versus time 

Ephemeris range versus time 

c. Position .Location Plots 

L-band and C-band ranging 

Ephemeris data 

2. Statistical analysis of the L-band and C-band data to determine 

error sou;rees, equipnH;mt performance, range biases, and relative performance of 
.,.. 

the two ranging systems. The plots generated from these programs a:r~: 

3.2.3.1 

a. Autocorrelation of Ranging MeasureiYlents Errors 

L-band 

C-band 

b. Cross correlation of Ranging Measurement Errors 

C-band versus L-band 

c. 

d. 

Scatter Plot of Range Measurements 

C-band versus L-band 

Probability Density Distribution of Ranging Errors 

C-band % of time versus class number 

L-band % of time versus class number 

e. Cumulative Distribution of Ranging Errors 

C-band measured error distribution on unormal" scale. 

L-band measUl;ed error distribution on "normal" scale. 

Real Time Plots 

The first programmed plot is a printout of the data on the master magnetic 

tape. This plot show.s the corrected L-band and C-bandrange values and the ephemeris 

predictions ove.r the measurement i~terval all plotted on a colllllion time base. The data­
in the plots has been corr:e:;;,ted for hine~mbiguity. 
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A typical example of this plot is shown in figure 3. 6. The analyst can see how both the 

L-band range data and the C-band range data agrees with the ephemeris data during 

a particular experiment period. The plot shows the scatter of individual L-band range 

measurements compared to ephemeris range curve, which gives an indication of 

the peal~ to peak errors experienced during the measurement period. 

The smoothed data plot is the second programmed output. The regression 

analysis program takes the ranging measurements, which are assumed equally spaced 

in time, and determines the coefficients of a second degree polynomial using the 

"method of least mean square fit" and determines the standard deviation of the measure­

ments from this least square polynomial fit (i. e., the rms error). From these 

calculations the smoothed data plot of the measured data is obtained. A typical 

example of smoothed range is shown in figure 3. 7, which is the companion curve to 

figure 3. 6. From this plot the following calculated information is obtained for either 

the L-band or C-band smoothed range: 

a. Range value in meters at the y-axis intercept (time = 0). 

(Example: C -band = 37,263, 248 meters, from figure 3.7). 

b. Velocity coefficient,or average range rate of change in meters per 

second (Example~ C-band = 3.9921 MiS). 

c. Acceleration coefficient or rate of curvature in meters per second 
2 sqQ%red (Example: C -band = -0.0007 MiS ). 

d. Standard deviation or RMS error (in meters) between the polynomial 

fit and the actual measurement. (Example: C-band = 5. 8542 

meters). 

The third real time programmed output is a set of plots for the position 

location experiment. Figures 3. 8 through 3. 11 are typical plots from this program. 

In this experiment the L-band, ranging was to the ATS-5 satellite and the C-band 

ranging was to the ATS-l satellite. The position location scatter plot is this programmed 

output and is shown in figure 3.8. In this plot the target in the center is the actual 

location of the Mojave ground station. The horizontal and vertical lines through this 

station point are marked off in 100-meter steps. This station point is also listed at 

the top of the graph. The rangE( measurements to each satellite intersect in this 

graph in the southeast quadrant in a scatter as shown. The position of this scatter is 

listed at the top of the figure un,d.er "center of scatter.!! The distance from the station 

point to the center of the scatter is computed and printed in the data at the top of the 
.~:. -

chart. In this caSe this distance was 795 meters. 
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POSITION LOCRTION SCRTTER OF 
ATS-I RND RTS-5 C-BRND RND L-BRND 

DRTE-3125171 
STRRT TII1E-IBI306 
END TIME- 181557 

CENTER OF SCRTTER 
LONGITUDE = 116.88286 
LATITUDE = 35.14422 
THE OISTRNCE BETWEEN 

'" .. 
~ 

:; ... 
=> 

'" '" 

,'" ~~ 

STATION POINT 
LONGITUDE = 116.8B80 
LRTITUDE = 35.1500 

THESE IS 795 METERS 
~ 

Figure 3. 8 Typical Position Location U si Measured Range Data for S-1 and ATS-5 
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SITION LOCATION SCATTER OF 
ATS-a AND ATS-S EPHEMERIS 

OATE-3I2SI71 
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Figure 3. 10 TS- 5 L- Band and Ephemeris Range Data 
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The other plots generated as part of this position location program are 

printErl as an aid to the analyst in deter:rnining the source of errors hi the position 

locatk;n. Figure 3.9 is a plot of the emphemeris data to determine if this data does 

come back to the station location. This is b6fu ~ check on the program and on the 

ephemet'is data. Several sets of this data were found in error and we;re detected by 

this plot. The plots of figures 3.10 and 3.11 are corret~ted data pIotr' showing the 

measured data and its corresponding ephemeris data. The A'1'S-5 data is shown in 

figure 3.10 and ATS-1 data is shown in figure 3.11. The average distance between 

the two curves is printed tit the top of each plot. These data plots shew how the 

actual measurements compare with the ephemeris range, and how these tnaasure­

ments affect the position location, as shown in figure 3. 8. 

3.2. 3. 2 Statistical Presentations 

Explanation and pr€Jsentation of statistical data for C-band and L-band error 

autocorrelations, crosscorrelations, sca.tter plots, probability densities, and 

cumulative distributions, are c overed in greater detail in Section 5 with illustrated 

examples. 

The first plots are the C-band and L-band error autocorrelation functions 

plotted on a single graph (example shown in figure 5.1). In general,the auto-

, correlation function has the follOWing characteristics: 

a. It is an e\,~n function (i. e., symetrical about T =0). 
'.' 

b. tP 11 (0) is the mean square val~e and also the maximum value 

c. ,p 11 (T) is not unique 'i 

The purpose of the second plot (figure 5 •. 2) whi??is the C-band and L-band 

error cross correlation is to determine if errors are caused by a common 

mechanism, such as inonoapheric a.n()malies, or are caused by independent mechanisms. 

If errors are equally well correlated under all controlled signal conditions t these plots 

'\\QuId indicate an independence of the error sources from the controlled variables. 

The~cl'osscorrelati()n function basically describes how well the erl'ors in two 

different measurements ,Or time varying functions) vary with respect to each other. 

If.thf;~t;lll.easul'ements 'are correlated, there could be a causal relationship between 

errors. 

The third 'plots (figure 5~3) ':~re ~catter plots which displar the amount of . 

agreement or . disagreement for the corresporiding;sets of range measurements. 
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The probability density of the errors for the L-band and C -band range 

errors are plotted on a single graph (figure 5.4). The significance of these plots is 

the shape of the distribution and how closely it resembles a Gaussian distribution. 

The cumulative distributipn (figure 5. 5) is the integrated probability 

density function and is plotted on a single graph for both C-band and L-band range 

errors. 
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4.1 

4.1.1 

SECTION 4 

L-BAND RANGING EXPERIMENTS 

SIMULTANEO.US C-BAND AND L-BAND RANGING 

EXPERIMENT 

Objective 

./J;'~ 

Jv.£'... .1 

The primary objeci;ive of this experiment was to obtain L-band ranging 

measurements on the ATS-5 satellite using the OSFC ;L-band ranging receiver and to 

compare this data with the C-band ranging measurements simultaneously obtained to 

the same ATS-5 satellite using the standard ATSR ranging system. The C-band 

measurements were used as a basis for establishing the relative accuracy of the L­

band measurements, since it is believed that tlj.is smoothed C-band range, versus 

elapsed time, represents the most accurate range measurement which would be avail­

able. The results of this experiment have indicated the relative accuracy to which 

these L-band ranging measurements can be performed. 

4.1. 2 Test Description 

The test setup block diagram for this simultaneous C-band and L-band 

ranging experiment is shown in figure 4. 1A and 4 .. 1B for mode 5 and mode 1, respet>-

tively. The C-band ranging measurements were performed by the Mojave station ATSR 

ranging system. In addition, th~s same ATSR transm~t signal was used (in mode 5) as 

the exciter signal for the L-band transmitter. The GSFC L-band ranging receiver 

then"utilized that returned signal to perform the L-band ranging measurements. These 

readings were made concurrently over the speCified test period. 

The ATSR system has· eight different rangingfrequencies; 500 kHz, 

100 kHz, 20 kHz, 4 kHz, 800 Hz, 160 Hz;, 32 Hz; and 8 Hz. The highest frequency 

tone is used to determine the finest range increment, and the lower frequency tones 

to resolve range measurement ambiguities. This highest frequency tone used may be 

selected on a mode basis. In selecting mode 1, 500 kHz is the transmission frequency 

or major range tone ... Operation in mode 5 makes 20 kHz the major range tone. Since 

the GSFC L-band ranging receiver was designed to per{()rm with a 20 kHz ranging 

. tone, mode 5 is selected in theo:l\T:SRsystem to aocommodate the L-b::l.Jl~lEaIlging 
: ':'. f .:":_,",<. _ .. . ---,::::: ," 

receiver. ATSR range ~eadings in th~smode exhibit approximately five meters 
. ..... . .. I . 

4.1 

1 
i ,.J 

\ . 

~";. 

\ 

l 



1. 

'" i J1!:~~.. I ~ 

of range measurement jitter as compared to one meter of jitter for readings made in 

mode 1. The overall accuracy of the smoothed data is not affected. Most tests in 

this simultaneous experiment were performed with the ATSR system in mode 5. 

However, some tests were also performed with the ATSR system in mode 1. As seen 

in figure 4. 1B, a separate source of 20-kHr. modulation was required for this condition. 

This was provided by two Hewlett-Packard synthesizers. The HP-5102 synthesizer 

operated at 20 kHz and supplied the reference tone to the GSFC ranging receiver as 

well as modulating the 70 MHz output signal from the HP-5105 synthesizer. When 

operating in mode 1, these two ranging systeIlls are completely independent of each 

other. 

The first step of a ranging measurement is to "zero set" the ranging 

syst€.lm to the known delays of the collimation tower. This setting removes delays 

caused by the equipment and the spacecraft. The calibration setting for the C-band 

ranging has ;,een determined by the station system engineers to be 23,980 nanoseconds, 

two-way, or 11,990 nanoseconds, one-way. Since the L-band antenna was 80 meters 

(or 260 nanoseconds) closer to the collimation tower for this experiment, the calibra­

tion setting for the L-band ranging was assumed to be 11,730 nanoseconds. Since the 

completion of this testing, a descrepancy in the L-band "zero setll has been determined. 

When the equipment time delay for the spacecraft transponder was obtained from the 

manufacturer, a summation of the collimation tower and spacecraft delays revealed 

that an additional 390 nanoseconds delay should have been included in the "zero set" 

calibration. This yields a one-way calibration setting of 11,340 nanoseconds instead 

of J.l, 730 nanoseconds which had been used. This error causes the L-band range 

reading to be approximately 120 meters too long. Also, since the L-band antenna is 

located 90 feet south and 445 feet west of the C-band antenna j the geometry of these. 

two antennas in respect to the ATS-5 satellite causes the L-band signal to travel 14 

meters further than the C-band signal. This is discussed in more detail in Section 6. 

Therefore, summing these two errors showed that the L-band reading was approxi- . 

mately 134 meters longer than the C-band measurement. 

For the measurements of this simultaneous C and L-band experiment, 

the C~band ranging readings were made in all tests with the transmitter power output 

ordinarily employed in the ATS program for orbit determination. However, to 

determine the effects of signal stri3ngth on the ~-band ranging, several ranging tests 

weri3performed at the fQllowing various transmitter outputs: 1000, 500,250, 64, 32, 
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16, 8, and 4 watts. Most of the tests, however, were performed at the 1000 watts 

transmitter output. Three minutes of ra,nging data were generally recorded for each 

test period. 

4.1. 3 Experimental Test Results 

The results of the simultaneous C.,..band and L-band ranging tests performed 

at Mojave are presented in tables 4. ;t. and 4.~. The data presented in the first table 

is that obtained with the ATSR C-band ranging system operating in mode 5, thereby 

providing the L-band ranging system with its 20-kHz measuring tone. The data pre­

sented in the second table was optained w~th the ATS)1 system in mode 1. For these 

measurements, the 20-kHz L-band ranging tone was externally inserted by the frequency 

synthesizers as shown in figure 4. lB. This measured data is divided into these two 

tables because of a descrepa1,1cy in the L-band measurements when operated in mode 1. 

This discrepancy will be fully discussed lat~r in the data analysis paragraph 4. 1. 4. 

The results shown in tables 4.1 and 4 .. 2 are groupedinto the days when each 

of the measurements were made. The first column shows this date and the time span 

from beginning to end of the test, such as: 18QO hours, 42 minutes (Zulu) to 1900 

pours, 8 minutes (Zulu) on Mar9h 25, 1971. The second column denotes the transmitted 

." power level of the· L-band system. This Qutp1,ltpower was varied from a. maximum of 

1000 watts to the lowest power of 4 watts. The next three columns present the one-way 

range data; the first being the ephe:rp.el'is range at each time of measurement, the 

second being the measured C-band range, and the third being the measured L-band 

range. Values given are the zero intercept points taken from the smoothed data plots 

for each measurement period. I:p. the next three columns the· difference in rangE? values 

of the preyious thr'3e columns are compared. The first is the difference between the 

ephemeris,' range and the C-band range. Next, th~ difference between ephe~eris and 

the L-band range. The third colump. compares the difference in the L-band and C-band 

m.easured ranges. The fourth column is the "corrected L~CfI column. For this data 

the 134 meter flzero setfl error ,explained in parflgraph 4. 1. 2, has been removed from 

the differences of column three. The last two columns of the tables present the stand­

ard deViation (or sigmas) of the meas1,lre.d data, first for the C-band readings and then 

for the L-band readings. 

In exami~ingtable -;t.1 the datafor March 25, 1971 appears to be the best 

e}{alll:rle of a typical set ofme.a.surementsi thus, a set of the data plots for this day are 

presented in figure 4. 2 thrQugp.4:~.,Sincethe 250 watts,64~atts, anc;i ~2 watts data. 

plotswereesseiitially the same as theJP'Q(lwatts. data :rIot, omy the 1000'Watts plot .. 
. -', " ". ~<:--7_ -:.h , , 
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Measurement 
Date 

Ai>Nl14, un 
(18HZ - IMSZ) 

AprU 2~ , 19'71 
(1853Z · 19042) 

April 26, 1911 
{l837Z - 1852Z) 

AprU 29, 1971 
(1808Z - U36Z) 

l 000W 
SOOW 
250W 

500W 
250W 

W 

l OOOW 
500W 
250W 
6(W 

. 10()0W 
-lOOOW 
1000W 
l000W 
l000W 

.... n..J.'1.£A.lUS 

ll1.2-l9.717 37, 2U, 428 
37,250,984 37,250,703 
37,252,054 37,251,780 

37, 261,7'92 37,261, 494 
37a.U2.9~ 37,262,655 
37,263, 864 37,263,580 

37, 262,213 37,261.922 
37,263.088 37,262,811 
37,264.187 37,263,927 
37.26.5. 076 37. 2M. 824 

37,259,904 37,259,576 
;17,261,861 37.261,592 
37,263.601 37,263,311 
37,264,474 37,284,199 
37.265,3" 37.265,085 

·Speela'l Te.t (A TaR ill Mode 5) 

37,245,862 +291 
37,247,127 +281 
37,248,189 +274 

37,257,903 +298 
37,259,055 +285 
37,259,922 +284 

37,258,374 +291 
37,259,264 +2'17 
37.260,374 +2 
3'1,261,278 +252 

37,255, 953 +321 
37,25'1,956 +2. 
37,259,'141 +291 
37.260,616 +215 
37,261.503 +259 

-

5 1 

+3855 -3514 +" 7. IS 1.61 
+3857 -3571 +31 5.n 
+385G -3582 +H 1. 

+3889 -3591 +23 1. TO Iv. 
+3885 -3600 +" 1. M 1 
+3942 -W I -M 1.7 

+3951 -3623 .. 
+3105 -aG3G ·-0 11..3 I. T, 
+3868 -3575 +3t 1.41 4.71 
+!858 -3583 +S1 1.44 .., 
+3Ml -3582 +32 1.01 ..,51 

• 
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was included. The other plots included are 16 watts, 8 watts, and 4 watts. In each 

case the corrected data plot and the smoothed range plots are given for each test. The 

ephemeris data appears only on the first plot (figure 4. 2). All other plots were made 

before the ephemeris data had been obtained. The slope of the graphs is caused by the 

movement of the satellite during the test period. The upward slope indicates that the 

satellite was moving away from the measuring station. The plots of figures 4. 2, 4. 4, 

4.6, and 4.8 show the raw experimental data with the L-band and C-band points 

"corrected" for lane ambiguity. The "smoothed range" curves of figures 4.3, 4.5, 

4.7, and 4.9 were obtained by fitting the raw data as shown on the previous curves to 

a second d\'3gree polynomial using the method of "least mean squared fit;" The program 

for the sinoothed range curves also computes for each r-:Sllge curve the standard devia­

tion (sigma), the zero time intercept, and the velocity and acceleration coefficients. 

The data obtained during this series of simultaneous ranging tests was also 

computer processed as described in paragraph 3. 2. 3 to provide all the statistical data 

output plots, such as: autocorrelation, crosscorrelation, scatter plots, probability 

denSity distribution, and cumulative distribution. A detailed analysis of these statisti...., 

cal plots, giving typical examples, is presented in Section 5. 

4. L 4 Analysis 

The data plots of figures 4. 2 through 4. 9 are typical examples of the meas­

urements obtained for this simultaneous C-band vs L-band ranging experiment. These, 
"J '" .'~ 

plots include variations in L-band transmitted power from the highest level of 1000 

watts to the lowest of 4 watts. ,The "smoothed range" plots list at the upper left corner 
. 

the ,coefficients of the second degree curve which has been fj,tted to the range data. The 

first number (approximately 37., ~!38, 000) is the range in meters to the spacecraft at 

the ('\a.rt of the data, run (time O. 00). This value has been tabulated in tables 4. iand 
,.~-.\ 

4.2. 

In examining each of the plots of the "corrected data'! (figures 4.2, 4.4, 

4.6, and 4. 8), the effects of degrading the SiN ratio can be seen. As the L:-band, 

transmitted power Was decreased, the L-band rarige measurements progressively h30d 
~'; 

:more jitter, or fluctuation, in the readings. The standard deviation varied from 4. 52 
,j .>" 

m,eters at the 1000 watt power level to 52.01 meters atthe 4 watt power level. This 
o 

l(Jf~ver ,power has a detrimental effect on the accuracy of the individual ranging measure,-
,i;, ' .• ', J " ., , ',' ,"",',,' t/' 

, 'ftJl1~~(l1t$,. ,'Since the C:-band ranging Was performed at its full power level, those ,simul-
:;, ,,:,~r ' . :',r' . ", ''<;j '. , ..... _ : ,. -';, ~ . . _. , _ ,---..,: .'.' . _ '.' " 

tanelotis Q;:;'band readings can be cons'ider,ed as ,a standard:::':with which to compare the 
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L-band measurements. This comparison is tabulated in table 4. 1 as the Difference in 

Range (L-C) column. For March 25, 1971, as the transmitted power was decreased, 

another degradation can b(~ seen which was caused by the lower signal levels. The 

L-C differ€mtial decreased and even reversed sign indicating that these lower signal 

levels created a shift in the L-band range readings. This phenomenon is also present 

in the tabulated readings of table 4. 1 for other days. This shift was caused by a noise 

bias effect in the range tone filter in the front end of the demodulation drawer. This 

filter has since been redesigned to correct this biasing condition. 

In examining the three Difference in Range columns, it is seen that the 

L-band range is longer than the C-band range (except at low transmitted power levels). 

As ~yas previously explained in paragraph 4. 1. 3, this discrepancy was due to an error 

in the initial "zero set" when ranging to the collimation tower and to a difference. in 

path lengths. This made all L-·band range readings approximately 134 meters too long. 

By making this correction, the E-L column will increase by 134 meters while the L-C 

column will decrease by 134 meters. This would now make the L-band and the C-band 

ranging measurements es~eritially equal. However, both of these readings are still 200 

to 300 meters away from the ephemeris range which was calculated from the Goddard 

orbit determination program. The reason for this difference was not revealed until the 

results of the 24-hour simultaneous experiment were processed. When this ephemeris 

data was observed over a day, a cyclic variation was discovered in the (E-C) or (E-L) 

differenceS which showed that this ephemeris data actually varied from ,~450 meter's 

longer than the C-band reading to -100 meters shorter than the reading. This is dis­

cussed in greater detail in paragraph. 4. 3.4. 

In examining the test results presented in tables 4. 1 and 4. 2, it is seen 

that a large difference between theL-band range readings and either ephemeris or C­

band range exists when operating in mode 1 (table 4. 2) as compa~~d to the difference 

in the same columns for mode 5 (table 4. 1) operation. This is caJ~ed by the L-band 

readind\ obtained in mode 1 being much shorter than they should be; The L-band 
',1 

ranging system wa.s dismantled and ~oved from Mojave before this data was processed 

and this discrepancy discovered; therefore, the true cause of this problem could not be 

investigated. However, the followirig'-iS theorized. The mode 1 configuration used the 

frequencY'synthesizers to provide the 20-kHz rat\K~,p1easuring tone for the L-band 

ranging system. If, in:co~~cting these sYritlie,~.~¥~~s, a phase reversal of the ranging 

tone occurred for either therefere~peorm()'d~~~W~riinrespecttothe phaseQf tl1e _ , 
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ATSR system, then the measurements could be off 1800 or 1/2 of a lane. For the 20-

kHz ranging tone, the one-way lane width is 7496 meters or 3748 meters for 1/2 of a 

lane. Since the L-band data is short, then this 1/2 lane value is added to the L-band 

reading. If the 134-meter "zero set" error is removed, tliis correction value becomes 

3614 meters. This is the constant used for the "corrected L-C" column in the table 

4.2. It is seen that this 1/2 lane correction does cause the L-band ranging reading to 

now be approximately the proper magnitude; thereby, giving credibility to this theory 

for the cause of the discrepancy in the L-band readings. 

In table 4.2 on April 29, 1971 the two test runs with the asterisk were special 

in that the synthesizers were used for the L-band range measurement, but the ATSR 

system was switched to its 20 kHz ranging tone. The effect of this caused the standard 

deviation of the C-band mea81rements to be much higher than corresponding feadings 

for the same day when operating in mode 1 (500 kHz tone). However, the L-C difference 

remained essentially the same as the other readings. This test demonstrated that the 

resultant bias error is not a function of the A TSR tone frequency, but is due to .the 

phase difference between the ATSR tone and the tone provided by the L~band synthesiz_er. 

With a 20 kHz range tone u~ed for the L-band measurements, a large num­

ber of ambiguity lanes (approximately 5000 lanes) exist 3.;lfd a small error in the pre­

cision of this measuring frequency can cause a large error in the range reading due to 

the cumulative effect. Calculations show that if the 20-kHz measuring tone is only 0.1 

hertz off frequency, the measurement error will be 187 meters. In the "correJted 

L-C" column of table 4. 2 the L":'band reading appears to be roughly an average of 40 

meters longer than the C-band readings. If the ~ynthesizer .frequency set was only 

O. 02 hertz high in frequency (20. 00002 kHz), the error would be 38 meters. Thus, the" 

use of this L-band ranging system at locations where there is no ATSR ranging system 

will require a highly accurate source for the 20-kHz 'measuring tone. Also, befor~ 

the use of an external tone source (synthesizer), an investigation should be 'conducted 

to insure that this source does not cause the phase reversal and resultantl/2 lane 

error in the L-band reading. 

4.1.5 Conclusions 

From the data obtained in the simultaneous C-band and L-band experiment, 

the L-band ranging system compared very well with the A'rSR C-band ranging system. 

If the data is examined which exhibits a lowstanda.rd deviation and thus good signal 

conditions, it is found. that the average L-band7~ge :agrees with the C-pand range to' 
. " .. \\' . 

. _".,/1 
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within plus or minus 15 meters. 

It was found that when the ranging tone was derived from an external 

source and not the ATSR equipment, the possibility of error was introduced. With the 

awareness otthese problems and care in configuring the ranging system, errors can 

be eliminated. 

It was also shown that the L-band ranging data tended to become "noisy" 

when the power level dropped below 64 watts. With the 15-foot antenna at Mojave, this 

was an effective radiated power of +53 dBw. Thus, when future applications of this 

ranging system are comtemplated, these conditions should be considered with respect 

to the accuracy of the ranging data. 

C) \\ 
'~ 
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4.2 

4.2.1 

SIMULTANEOUS C-BAND AND VHF RANGING 
EXPERIMENT 

Objective 

The primary objective of the simllcltaneous C-band and VHF ranging 

experiment was to obtain a comparison of range measurements to a given satellite 

using C-band with the GSFC rangip.g receiver, and VHF with the ATSR ranging system 

at the same time. Simultaneous ranging runs were made to both A TS-l and A'rS-3 for 

this experiment. The C-band measurements, as in the simultaneous C-band and 

L-band experiment, wpere used as the measuring base for establishing the relative 

VHF ranging accuracy, since the C-band data was the best available information. 

4.2.2 Test Description 

The test setup for performing the simultaneous C-band l:'1d VHF 

ranging experiment is shown in figure 4. 1.0. In this experiment the station ATSR 

ranging system was used in. conjunction with the VHF equipment to establish an 

unambiguous spacecraft range. The GSFC ranging receiver was used in conjunction 

with the C-band equipment to provide an ambiguous range reading which was then 

corrected for lane ambiguity against the A TSR range reading. 

All simultaneous C-band and VHF tests were performed with the ATSR 

equipment in mode 5 •. Mode 5 provides a maximum ranging tone frequency of 20 kHz. 

No higher frequency ranging modes can be used with the VHF transponders on ATS-l 

and ATS-3 because the transponder bandwidth is only 100 kHz. The higher frequency 

ATSR range tones fall outside the transponder passband. 

The two ranging systems were completely separate in this experiment, 

except that the ATSJ} ranging tone was\used for both systems. The ATSR ranging tone 

was used to phase modulate an HP 5105 frequency synthesizer which produced a 

calTier frequency (74.61 MHz) of one half the final VHF transmission frequency of 

149. 22 MHz. The frequency synthesizer output was amplified sufficiently to drive the 

VHF transmitter,where the carrier frequency wa§ doubled and the level amplified to" 

approximately one kilowatt. 

The20-kHz modulated 70-MHz output from the ATSR equipment was 

Uf'>ed to drive the C-band transmitter where the Signal "vas up-converted and amplified 

to a level_of approximately five kilowatts. The 70-MHz output from the C-band receiver 

'Nas fed to. the GSFC ranging receiver, rather than to the A TSR, as it is in the normal 

';ranging mode. 1'he GSF,C rangingre~eiverwas designed .. to ppe,rate on a pulsed:::~ignal 
which was,;rer,eiv!'rl fro~ ATS-'5. Consequently, it was necessary to obtain a one '1', 
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pulse per second signal from the ATSR equipment to gate the ranging receiver. A 

range reading was pmched out on eight level paper tape on a one reading per second 

basis. The reference tone from the ATSR equipment was delivered to the GSFC 

ranging receiver to use in making the phase determination. 

Calibration or zero setting of the two ranging systems performed 

similarly to the zero setting for the si:)Uultaneous C-band and L-band ranging experi­

ment. The primary difference in the C-band calibration is that the GSFC ranging 

receiver reads out in one-way range delay time. Thus, the readout is set to 11. 99 

microseconds, which is the one-way C-band range to the collimatioii tower rather 

~ '." ..... ' 
J Wt....... i! 

than 23.98 microseconds or two-way range as is used when the ATSR is used on the 

C-band link. Calibration of the VHF system using the A TSR equipment was accomplished 

in the same manner as when the C -band link is used. The calibration for the VHF 

system requires setting the ATSR readout to -4.7 microseconds. Since the ATSR 

cannot be set to negative numbers it was necessary to set the readout to 124995.30 

microseconds which is 4.7 microseconds less than the reset or zero range rE:ading. 

It should be noted that tbe A TSR equipment maximum reading is 124999. 99 microseconds 

which is equivalent to an 8--Hz wavelength. 

Antenna physical location at Mojave played a part in the range measure­

ments for the C-band and VHF experiment. No correction was made in the calibration 

of the ranging systems to account for the difference in physical position of the VHF and 

C-band antennas. The correction must be taken into consideration when the processed 

data is analyzed. When ranging to ATS'·l, the C-band range is 80 meters longer than the 

VHF range due.to antenna location. When ranging to A TS-3, the VHF range is 107 

meters longer than the C-band range for the same reason. The antenna geometry 

included in Section 6 shows the various antenna locations and spacecraft directions 

with respect to the Mojave station. This section should be consulted for additional 

information on the physical layout of the Mojave- station and the antenna location. 

A limited number of test days were obtained for simultaneous C-hand 

and VHF rmging measurements. Consequently, all test conditions in terms 'of power 

and modulation index were made at nominal station conditions. For the VHF transmitter 

the nominal pq;~,;er level was at least 500 watts when ranging to either spacec~aft.. pue 
" ,.: )i 

to the difference in spacerrraft receiver front ends, the a-band power level jvas at least 
l} ", . -.. - .' _ ... :--;.~~' 

500 watts for ATS-3 ranging and 5000 watts for ATS-l ranging. All data runs were 

approximately three minutes in length. 
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4.2.3 Experimental Test Results 

The results of the simultaneous C-band and VHF ranging measurements 

performed at the Mojave station to ATS-3 are summarized in table 4.3. Table 4.4 is 

a data summary of the same results to ATS-l. All listed data was taken in mode 5 

using the 20~Hz range tone. 

For both tables column 1 lists the date and start time for the individual 

three minute data runs. Column 2 lists the one-way range to the spacecraft as obtained 

from the ephemeris magnetic tape. Column 3 lists the C-band range as measured on 

the GSFC ranging receiver after it has been corrected for lane ambiguity. ColumnA 

provides the VHF range as measured on the ATSR equipment after it has been corrected' 

for lane ambiguity and divided by two, making it one-way range. Columns 2, 3, and 4 

are obtained from the smoothed range plots and correspond to the respective ranges at 

the beginning of the individual data runs. Columns 5, 6, and 7 show the differences 

between the ephemeris and C-band ranges, ephemeris and VHF ranges, the VHF and 

'C-band ranges, respectively. Columns 8 and 9 are the standard deviation (or sigmas) 

of the C-band and VHF data, respectively. Columns 10 and 11 present the same data 

as columns 6 and 7 except that the VHF data has been corrected to account for the 

antenna separation. The VHF range measurements have been corrected to place the 

VHF antenna location at the same point as the C-band antenna. Thus, column 11 does 

provide a measure of the propagation path length difference between the two range 

measurements for the two frequency bands. 

Figure 4. 11 is a plot of range difference measurements between the 

simultaneous VHF and C-band range iBta. As noted on the plot the data covers 6/19/71 

and 6/25/71, which are the only two days on which a number of data runs were obtained 

which covered a significant time span. Each day data was taken over approximately 

5 hours. Figure 4. 12 depicts plots of ephemeris minus VHF 'range and ephemeris 

minus C-band range for the same days and times as given on figure 4. 11. 

Figure 4. 13 is a plot of a typical ~hree minute data run depicting the 

corrected raw data for C-band and VHF and the ephemeris data as extracted from the 

GSFC supplied magnetic tape. This particular rUi';.'~'Nas made on 6/19/71, at 0310 Zulu 

as noted on the figure. The vertical axis is one way range in kilometers while the 

horizontal aJl;isis time in seconds. Figure 4. 14 is a plot of the same information after 

a second degree polynomialc~~ye was fitted to the raw data. At the~o.R:left of the 

figure is a listing of the coefficients 6f, the curves to which the data was fitted. Fo~ 
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the VHF curve the range at the start of the run, on the vertical axis intercept; is given 

as 38,507,928 meters, with the velocity coefficient being 10.2477 meters per 

second and the acceleration coefficient being O. 0002 meters per second squared. The 

standard deviation is the deviation of the raw data about the smoothed curve and for the 

VHF is 6. 6225 meters. The format of the C-band data is the same, while only the 

starting range is given for the ephemeris data. 

All of the data was taken at the nominal transmit power levels for both 

VHF and C-band for the satellite being used in the test. All range measurements 

during these runs were made using the 20-kHz range tone. 

4.2.4 Analysis 

Several points were noted before the data presented in the previous 

paragraphs were analyzed. . First, there was very limited data over a limited time 

period on which to base this analysis. Consequently, analysis of the simultaneous 

C-band and VHF range measurements was tempered by these constraints. Second, 

the results of an individual run, 6/25/7112207, were distorted somewhat by one bad 

data point. This one bad point on the VHF range measurement caused the standard 

deviation to be 22. 92 meters,although the data for the run was no more noisy than for 

the other data runs that day. The one bad point may have been a punch error, although 

it is not known for sure that this was the case. Where this situation occurred, a note 

was added to the remarks column of tables 4. 3 and 4. 4. 

In the simultaneous C-band and VHF tests, as in the C-band/L-band 

tests, the C-barld. data was taken as the reference since it was the best available data 

for comparison. In comparing the ephemeris range to the C-band range the difference 

varied between -10 meters to +984 meters for ATS-3 andfrom-430 meters to +4,59 

meters for ATS-l. This difference resulted from the prediction error in the orbit 

determination program. As noted in paragraph 4. ~. 2, this error was cyqlic, varying 

substantially in magnitude over the period of a day.':.Discussion with GSFC personnel 

indicated that prediction accuracy was considered to be approximately one kilometer. 

This was' substantiated by measurements made during this phase of the test program. 

One of the most useful comparisons made with the data was that between 

C-band and VHF. As expected, the VHF range measurement i'll all cases was longer 

than the C-band measure~ent~or the sa;rn~~Fillmrnt of time. The value of (VIIF-C) 

varied between +90 meters to +1181 meters for tlTS-3and from +489 to +1493.meters 
-,." ": - '. . - .. - '". -. -. 

for ATS,-:1. These values were takenf;rpmcolumnsl0 and ,II of tables 4.3 .and4. 4' ~~. 
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were corrected for the difference in antenna location. The values of the range differ­

ence for 6/19/71 and 6/25/71 were plotted on figure 4.11. Referring to this figure 

reveals the large difference that existed on 6/19/71 just prior to local sunset and the 

relatively large reduction in the difference immediately following sunset. After de­

creasing to a difference of 100 to ~vO meters this value was relatively constant through­

out the local night. There was some offset between the data of 6/19/71 and 6/25/71; 

, however, the diurnal trend was as expected. 

During the daylight hours the electron content of the ionosphere is high, 

reaching a peak near local noon. The electron content decreased rapidly after sunset 

and remained relatively constant during the dark hours. The high electron content 

during the day results in a group velocity less than the speed of light and iess than the 

group velocity during the night time hours. The result was that the measured range 

during daylight hours was in general longer than the range measured during night time 

hours for a given spacecraft distance. 

Tables 4. 3, 4.4, and figure 4. 11 indicate that the range difference be­

tween VHF ;:md C-band does, in fadt~ appear to be much greater during the day than 

at night. Since the ionospheric groupvelocity varies on a 1/f2 basis,the VHF range 

data should contain a propagation delay error of approximately 1000 times the C-band 

propagation delay error. A report* gives the nominal noon time peak integrated elec­

tron content of 2.4 X 1017 electrons/meter2 and,a typical maximum value on the order 

of 1018 electrons/meter2. USing these ValUfrdS fl~~ ATS-3 one obtains a VHF range bias 

during daytime hours between 735 meters ari~ 3500 meters and a C-band range bias 
'~\ 

between 0.735 meters and 3.5 meters. For,JATS-1 these values were somewhat lower 

because of the higher look angle to the spacecraft, being 586 meters and 2300 meters, 

respectively. Variations between daytime highs and nighttime lows in integrated elec­

tron cori,tent are Wide, with a ratio of seven being a reasonable number. If this ratio 
~ . 

is assumed; then we findthat a nighttime range bia~at VHF between 105 meters and 

500 meters for ATS-3 is quite reasonable. The range difference measurements be­

tween VHF and C-bandfor both spacecraft fell within these values for both daytime and 

nighttime ranging periods. 

Information oI:}. the actual electron content was requested from Dr. A. V. 

daB;QHa at staDfordtJniv,~rsitybut the data was not currently available. Variations in 

*Wernlein, C. E."Summary Reporf1540 to 1600 MHz Prbp~ation Betweeil.Geostation::-
arySatellites aI1(:LAircraft", NAS,A:Document X-409-71:"72",clf)70. " " (1 
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electron content of the ionosphere are quite wide and vary with time of day, time of 

year, and sunspot activity. Consequently, without actual values available for the inte­

grated electron content it was only possible to speculate whether or not the range bias 

was reasonable. 

4.2.5 Conclusions 

In analyzing the Simultaneous C-band and VHF d9.ta, a significant point 

was the difference between the C-band and VHF range measurements and magnitude of 

the change between them from day to night. The r~g,F'l bias during mid-day for ATS-3 
~ ;" - ! ! 

was approximately 1181 meters with VHF being lQn~~r. This is a reasonable value to 
;,. 

expect as a result of the group velocity being les([than the speed of light throu~~l the 

ionosphere. Plots of the range difference between VHF and C-band versus time of day 

followed the expected pattern for the limited amount of data that was obtained. That is, 

the VHF range exceeded the C-band range by approximately 1181 meters during the 

daytime peaks in electron content and 100 to 150 meters during the night time loW' in 

electron content. 

The standard deviaftQn of the data for both VHF and C-band was in the 

order of 5 to 6 meters for most of the data runs. On several Tuns spikes of unknown 

origin caused one or the other of the sets of data to exhibit a high sigma value. On 

those runs where spike~ were noted, the data was, in general, quite good with the 

exception of the spikes~~ Keeping this in mind, it was found that very little difference 

in ranfe jitter could b~\noted between the VHF and the C~band data. 
'.;" \\ 

. ,. With the/'bonditions outlined in the preceding paragraphs in mind, the 

f 11'· l' ( . d o owmg cone USlOns w\rre summarlze . 
'. II . 

1. Raw rHF range measurements included sufficient bias to render 

therJ unsatisfactory for accurate ranging or position location deter­
II 

.mi.nation. 

2. The daytime and nighttime range bias at VHF frequencies varied 

between 1181 and 100 meters, respectively, and these values were 

quite reasonable, based upon expected ionospheric electron content. 

3. 

4. 

The variation in,irange bias followed the theoretical trend, being 

greater during daylight hours when the ionospheric electron conte,nt 

was highand.1ower during nighttime hours when the electroncoiltent 

was low." 

Little difference was noted between the :qUality of the VHF ranging 

data and theC-band ranging data.exceptfor the VHF rangebias~ 
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4.3.1 

" 
~\ 

." 

SIMU'LTANEOUS 24-HQUR RANGING 

Objective 

The objective of this experiment was to perform simultaneous intervals 

of L-band and C-band ranging measurements on the ATS-5 satellite over a 24-hour 

period. Again the C-band measurements were used as. a basis for establishing a 

reference against which the L-band measurements were compared. The results of 

this experiment provided a "one-shot!' examination of the diurnal effects on this ranging 

data. 

4.3.2 Test Description. 

The test setup for thi~ 24-hour simultaneous C-band andL-band experi'" 

ment was the same as that shown in figure 4.1A. This experiment was performed with 

the equipment operating in mode 5, such that the 20-kHz ranging tones were obtained 

'from the station ATSR sY'stem. At the end or the simultaneous test runs,the experi­

ment was reconfigured for sequential testing. This was a special test in which ranging 

measurements for both C-band and L-band were alternately made through the GSFC 

Ranging receiver. From these tests, any differences between readings obtained by the 

GSFC receiver and the ATSR receiver may be compared. 

Though this experiment was galled a 24-hour test, the period of time 

over which these measurements were performed was onlY' 17 hours (030QZ to2000Z). 

Each measurement interval of this experiment was three minutes. The first measure­

ment interval started at Mojave's sunset time (0256 Zulu or 6:56 PM, PST). The next 
\1 

measurement time started seven minutes later (0303Z). Mter this, there was a test 

interval at the beginning of each hour until 1130Z which was an hour before sUllrise. 

For an hour before and after sunrise thel11easurements were performed every 30 min­

utes. At 1400Z the hourly schedule was resumed until 2000Z, which was the last 

simultaneous test interval performed. It wasunf()rtul~ate that the '~lotted time for 
• I." • , 

this experiment did not allow a 24-:hour cycle tobecc;Inpleted~ since the results, which 

are presented later, wer.e beginning to show a trend Which should have. been more fully 

investigated. 
(~ 

The purpose of :the sequentj.fd test wasl to determine if there were any 
, . : ~ . . if . '. . 

unknown bui1t~in cons~:,8I1t:~ iii the GSFCL-band rangj!ng system. . The preferred method 
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to perform this test would have been to sequentially range at L-band ~ith the GSFC 
~. 

ranging system and then the ATf:l'R ranging system. However, the':A:rSR system cannot 

, use the L-band system on ATS-5 for ranging due to the satellite spin. Thus, the se­

quential test was performed by alternately using the GSFC ranging receiver to measure 

the L-band range and then the C-band range, which this system can do. The sequential 

tests were performed such that, first a test interval of L-band ranging measurements 

was made through the GSFC ranging receiver; then the C~band receiver was connecttJd 

to the: GSFC ranging receiver and,a period of C-band ranging measurements was made. 

This alternating of L-band and C-band was continued for seven 3-minute test periods 

in sequence. Instructions were tc. have the elapsed time between the test periods as 

short as possible. The elapsed time was from 2 to 3 minutes between all the test runs 

except between the first and second which was 14 minutes. Thus, the second through 

the seventh test runs were the ones which could best be compared for any differences 

in measurement constants. 

4.3.3 Experimental Test Results 

The results of th<;:l 24-hour simultaneous C-band and L-band ranging 

tests are presented in A. of table 4. 5 with the results of the sequential tests presented 

under B. In this tablf.:dhe test interval start times are presented in both Greenwhich 

(Zulu) time and the local PacifiC Standard Time (PST). Other column heads are the 

same as for the previous tables for Simultaneous ranging except there is an extra 

column labeled "corrected L-C." For this, the L ... band data was corrected by deducting 

~ the 120-meter "zero set" error and the 14 meter difference in path lengths due to 

antenna positions. With this correction, the r:,anges measured at L-band and C-band 

should have approximately the same readings. Any variations in these readings shQuld 

now be due to propagation anomalies. 

The curves presented in figures 4. 15 and 4.18 are graphical representa­

tions of the data in table 4. 5. The curves of figure 4.15 show the differences between 

the ephemeris range data and the C-band range measurements, and also the ephemeris 

and the L-band range measurements (uncorrected) as they varied over the day. The 

curve in figure 4.16 is a plot of the "corrected" difference between the L-band ranging 

measure:rp.~nts and the C-band ranging measurements (corrected L-C) over the day. 
\.. ,; 

The zero line represents the point where these two rangings are equal. A positive 

reading indicates th~t theL~';andrahging ;reading is longej~ than the C-band ranging 
, ',' ........ .' " . il 

readingtand a negative reading indicates tbat theC~bandrangihg islonger • 
. 1.-
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The sequential test results are shown in the B portion of table 4.,5. As 

previously stated, the elapsed time between the end of first test run (2026Z) and the 

beginning of the second test run (2043Z) was 14 minutes, making it difficult to extra­

polate this data. Thus, the first test is shown here but not used in these comparisons. 

Between the 2043Z test and 2053Z test, which were C-band rangings, the E-C difference 

changed from 0 to -3 meters. Thus at 2049Z (L-band test) the C-band E-C reading 

could be interpolated to be -2 meters which, when compared to the -107 meters for 

the E-L difference, gives an L-.C difference of +105 meters. Likewise, the other L-C 

differences were similarly calculated for this table. 

4. 3.4 Analysis 

In examining the 24-hour simultaneolls ranging data, it can be seen in 

figure 4. 15 that the calculated emphemeris range data obtained from the Goddard 

orbit determination program, when compared to the actual measured C-band:range 

data, has a cyclic nature. This E-C difference varied from +450 meters to approxima­

tely -100 meters in a 12~hour period. After investigation it was found that this is 

a characteristic of the orbit determination program and that past measured results 

from other experiments have also indicated a similar cyclic discrepancy. In this 

same figure, when the ephemeris was com:~ared to the measured L.;.band range data, 

this same cyclic characteristic was present, indicating that\t~ was truly the 

ephemeris which was causing the cyclic effect. 

This above fact provides an answer to the question which arose in 

paragraph 4. 1, table 4. 1, as to why the ephemeris range data was always approxuJitEdy 

200 to 300 meters longer than tlieactual C-band measurements (E-C). All those 

readings were made between 180Cizand>~}930~, thus causing the ephemeriS data to come 

from the same time.: portion of the cYclic curve and thereby, all being essentially the 
" .!,~me positive discrepancy. As the measurements were made from March 25, 1971 to 

.ApX"n 29, 1971, these E -C differences decreased showing that there was alsC) a. Slow 

'dr:iftto this cyclic difference causing a small daily shift to the curve. Thiscyclic 

effect 'of the ephemeris data will also d~(ISe some errors in'the location of a position from 
. .' .. \' " .,. 

tWoSf;ts6f:r:allg;fug~~~~sJrements as dekd;ribedinparagraph 4.4. ' 
, ',' :", ',,'<"', ,~.,,\'\\' ... '~~':~;':;\;~::'"~.-~~-~;. ,.. ~':." 
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Much work has been done in the theory of ionosphet'le propa.'''~I,*, HI. flte 

F-Region. In summary" as previously stated in paragraph 4.2.4, it is expected that 

thu propagation effects will generally change as the "integrated electron content" of 

the ionosphere varies. That is, during the night when the electron content is the lowes! lit 
there will be the least effect; while during the day, the effect will be the greatest. Just 

at and after sunset and sunrise when the electronic content is rapidly changing it is 

expected that abnormal effects will occur. These propagation variations will be a 

function of 1/f2, the higher the frequency the less the effect. Therefore, it would be 

expected that the L-band ranging data will show more diurnal variation than the C-band 

ranging data. Figure 4.16 is a representation of the diurnal variation of the L-band 

ranging measurement compared to the C-band (corrected L-C). This experiment 

started at local sunset at the Mojave ground station. For the first hour after sunset 

the L-C difference decreased sharply. By referring back to figure 4.15 it is seen 

that the C-band ranging was more severely affected than the L-band ranging during 

this hour. From this, it was obvious that both the C-band and the L-band range readings 

were longer than normal, but the C-band range had increased more than the L-band. 

This was opposit0 to what would be expected. 

In figure 4.16 the portion of the curve during the night and early 

morning (9:00 PM to 9:00 AM) varied in a random nature. There seemed to be no 

significant abnormalities around the sunrise. time. However, from 9 :00 AM until noon 

the curve showed that the L-C difference was decreasing. This means that the C-band 

range readi.ng was becoming longer than the L-band ranging as the electronic content 

was increasing during the day. Again, this was an. opposite effect to what the theory 

said should be expected to happen. Unfortunately, this test was terminated at noon so 

that a complet.e picture of what would have happened for the remainder of the day was 

not availab leo 

In the sequential test, by measuring the C~band range on the GSFC 

ranging receiver instead of measuring it on the ATSll system, a comparison was made 

of the results obtained from these two systems. The results of this test in B. of table 

4.5 showed that the. E-C, E-L, and L-C differences were continuing in the same trends 

as established in the simultaneous results shown in A. of table 4.5. The conclusion 

can be made that the t;;-band readings obtained by both systems are essentially the 

same; and, therefore, the GSFC ranging system was providing accurate readiIlgs ann 

there were no apparent unknown biases or constaints within this new system. 
~. . . . . 
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4.3.5 Conclusions 

The results of the 24-hour simultaneous C-band and L-band experiment 

have shown that for this one day of te~ting the C-band ranging, during the daylight 

hours, has increased in length more than the L-band ranging. Also, during the 

hours after sunset the C-band ranging was again longer. These phenomena are 

unexplained since they react in an opposite manner to any theory of propagation 

<";elays through the ionosphere. The L-band range reading, being measured at the 

lower frequency, should have been the one to become longer by as much as 35 meters 

during these times. If the propagation delays were caused by the troposphere, they 

should have been the same at both frequencies for the period of the measur(~ment. 

Since this is only one day of data, no definitive conclusion can be drawn frOl:Q. thesl~ 

results. However, they definitely dictate that additional study of this subj ect should 

be made. 

In addition it was shown that cyclic variation occurred for both the C-band 

and L-band ranging data when compared with the ephemeris. This again demon­

strated that the ephemeris data is inaccurate, and that the magnitude of the inaccuracy 

varies over a 24 hour period. 

Since the ephemeris was so inaccurate and varied with time, the dirunal 

ionospheric effect on the L-band and C-band range measurements could not be 

measured. 

,y" 
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4.4 

4.4.1 

POSITION LOCATION BY RANGING TO TWO SATELLITES 

Objective 

With L-band range measurements to A TS-5 and simultaneous C-band 

measurements to ATS-1 from the same station, it was possible to demonstrate a 

capability for determining the pOSition of the station on the earth's surface by means 

of the "line of position" method to be described. Sate~1ite!ephemeris correspondi~g 
to the time interval over which ranging measurements were performed must also be 

available. It is the purpose of this experiment to show that station position can be 

located reasonably accurately by ranging to two satellites. In addition, poSition loc­

ation using simultaneous VHF and C-band range measurements to ATS-1 and ATS-3 

was investigated. 

4.4.2 Test Des~ription , 

The test setup for position location is sho'wn'in figure 4.17 for L-and C­

band measurements and figure 4.18 for C-band and VHF measurements. Satellite 

pairings were as follows: 

L-band to ATS-5 and C-band to A TS-1 

C-hand to ATS~'"3 and VHF to ATS-1 
!! 

VHF to ATS-3 and C-band to ATS-l 

These simultaneous rangings together with satellite ephemeris were used to determine 

the posItion of the Mojave station. 

4.4.2. 1 General Discussion of Position Location 

Location of a point in space requires the specification of three independent 

quantities relative to a known reference point in space. These quantities can be a " 

distance and two independent angles. If the point is onor near the earth's surface, a 

natu.ral reference pOint is the center of the earth. Therefore, one of the three quan­

tities specifying the location of the point can be chosento be its distance from the cen­

ter of the earth. This determines a sphere upon: which are the possible pOSitions of 

point. Mathematically, the position on this surface can be unambiguously located by 
'I 

specifying two angular coordinates, such ib~ lati~de and longitude. Rather tll{ln mea-

suring the two angles directly, it is often more 9:onvenient to .calculate them from 

measurements made relative to other known reference points in space. Unfortunately', 

the introduction of ot!ter reference points leads to ambiguity in position location unless 
, , , 

redundant measurements are made. Inother words, more thanlwo measurements 

are necessary to'loca~r a pointon the earth ,if ambi~~itiesare to beresQlved •. :HoW;" 
'., .'. - .~~ ~. '~' ',' . . 

~~01' 
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ever, ambiguities are of little concern in this experiment, so we assume here that the 

two required quantities can be chosen to be the distances of the point from two known 

reference points. 

These two reference pOints are two of the A TS satellites, and the dis tances 

needed for position location are obtained by range measurements from the point whose 

position is to be determined, to the two spacecraft. Of course, accurate satellite 

ephemeris is necessary to specify the positions in space of the two reference points 

themselves. These range values determine two spheres centered at the spacecraft 

upon which are the possible positions of the point. The intersection of these two 

spheres is a circle. This circle, in turn, intersects the third sphere centered at the 

center of the earth. This defines two points, one on each side of the equator. These 

two points of intersection specify possible positions of the unknown point. This is an 

example of the ambiguities involved when more than one reference point is USed for 

pOSition location. 

4.4.2.2 Data Required for Position Location 

Inputs needed to locate a station on the earth's surface (or an aircraft fly-
~J 

ing at a known altitude) are simultaneous rangings from the target station to two satel-

lites, and the space coordinates of the two satellites relative to a known point on earth. 

This point does not have to be the station from which range measurements are made. 

In this experiment, however, the station was used because it allowed us to compare 

the calculated station pOSition with its known position without introducing possible 

errors due to the use of a second station. 

Satellite positions were obtained from the Goddard orbit determination 

program. The program yielded predicted satellite coordinates in terms of the range of 

the satellite from Mojave, and also its longitude, geocentric latitude, and distance from 

the center of the earth. These four quantities were computed at three second intervals 

during the time period over which range measurements were made; 

Because the earth is not a perfect sphere, its radius is a function of 
* \\ 

latitude. The Mercury Geoid is used'as an earth model. According to this model ,the 

earth radius at geocentric latitude Jj; is: 

Ro = A (0.998317 + O. 001683 cos 2 Jj; ) 

where A is the equatorial radius (assumed to be longitude independm t). A rough 

estimate of station latitude was needed beforehand because the earth radius is required 
- .. -~"' • • > i'-

in thf~ method of position location . 

* See Glossary 
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4.4.2.3 Description of the Method 

Suppose 1/1
1 

' and AI ,are the geocentric latitude and longitude respectively 

of one of the satellites, say ATS-5. These quantities are given to us from the Goddard 

.orbit determination program. If\!; and A are the geocentric latitude and longitude 
o 0 

of the station, which we wish to calculate, and if')' 1 is the angle defined in figure 4.19, 

then: 

cos ')'1 = sin 1/1
0 

si!l; "'1 + cos 1/1 0 cos 1/11 cos ( A C - A 1) 
t, •. 

Selving for A ,the unknown station longitude, we get o 

'\'(.,\\. -1 
X = '/1.1 + ces o -

')' 1 - sin 1/1 .0 sinl/l 1 1 
cos 1/1 0 cos 1/1 1 . J. 

The ambiguity implied by this result means simply that the station can be either east 

.or west of the subsatellite point. This ambiguity, of ceurse, must be re~olved by 

prior informatien, but if is usually clear which sign should be used in the equatien. 

Nerth 
Pele 

Satellite 

'Figure 4. 19 Geometry for Position Location 
',:'. 
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Thus, when cos 'Yl is determined, A 0 is expressed as a function of 

the uFnown station latitude 1/1 0 ,with the lmown quantities 'Y 1 ' 1/1 1 ,and A 1 

as par~tmeters. A graph of A 0 versus 1/1 0 is called a IIHne of position II (LOP). The 

value to use for cos 'Yl is determined from! igure 4. 19. 

cos 'Y 1 = R2 + R2 2 - rl 1 0 

2RIRe 

where rl is the measured range of the satellite from the station whose position is being 

determined and Rl is the distance of the satellite from the center of the earth. Rl is 

obtainedJrom the Goddard orbit determination program. When cos 'Y 1 is substituted 

into the equation for A 0 ,the station LOP is determined. 

To locate the station on this line of position we carry out this same 

procedure using a second satellite, say ATS-l. A second independent LOP is thereby 

determined: 

h = A o 2 

cos 'Y
2 

-1 + GOS J 

where f 2 ' A 2 ' r
2 

and R2 are the latitude, longitude, measured range, and distance 

from the center of the earth, respectively, of the second satellite. The times at which 

these four quanti.ties are obtained must be the same as the times at which the 

corr~sponding quantities for the first satellite are obtained. The position on the 

eal;Jal<~ surface where these two lines of position intersect is the location of the 
/- ~ 

st.atlon. 'This point is compared with the known coordinates of the Mojave station to 
- \\ 

evalJlate this technique for position location.<::' 
1/ - - ) -
~') '- - ,,-./ 

(\ A computer program has been developed to calculate the coordinates of 

the intersection of the lines of position and to plot them as a point on a graph of station 

latitude versus station longitude. Each graph consists of such points computed from 

rarfge measurements and satellite ephemeris obtained every three seconds of the run. 

This cluster, of points oan then be visually compared with the actual station location, 

which is also plotted. In: the pr£~ram an ambiguity arises in the computation of 

station latitude; the station Cali be either north or south of the equator.' This 

ambiguity is readily resolved in this'e;q>eriment. 

",', , 
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4.4.3 Experimental Test Results 

Table 4. 6 summarizes the results of the position location experiment. 

Times listed in this table are close to the start times of the range measurements. 

Each set of range measurements corresponding to the start time consists of about 60 

range values spaced by three seconds. These values, together with the corresponding 

computed range values extracted from the satellite ephemeris, were inserted in the 

program described in paragraph 4.4.2.2, yielding 60 possible locations of the Mojave 

station. 

Two typical position location plots (obtained from a subroutine of the 

position location program) using C-band and VHF ranging data are shown in Figures 

4. 20 and 4. 21. An example of position location with L and C-band range measurements 

and with ephemeris range values is shown in figures 3. 8 and 3. 9 of paragraph 3. 2. 3. 1. 

Table 4.6 lists, for each set of range measurements, the distance in 

meters between the actual station position and the average position computed from the 

range measurements. This average position corresponded roughly to the center of the 

cluster of about 60 possible station locations. The scatter of possible station positions 

about the a.verage position was also tabulated. This scatter is definl:ld as the root­

mean-square deviation from the average position~ 

To determine the causes of position locatio~ error, we need an estimate 

of the difference between the range measurements ap.d the corresponding ranges obtained 

from satellite ephemeris for each run. An average difference for the 60 poi'tits used in 

each run was computed, and table 4. 6 lists these values for all runs. 
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Figure 4.20 Position Location Using Measured Range 
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TABLE 4.6 SUM:MARY OF POSITION LOCA nON RESULTS 
Dlf .. ....,., ouremee DI&r...,., 
Bet_ Bet_ Bet_ 

DlalaDee BetwC!C!JI Scatter of I otataDce Bet.'ft:D Scatter of M.au"ud M .... ndud M_ndud 
A~"'" ud Compulld 

Computed I Actual ud Computed Epbemerla Epbe .... ria [pile_ria [pIIe_r'-
Stade. ""'-IUoo Ual. l'Ilo.lI.:111 About SIa.I .. "",-.aOll U .. 1q _IUOIIA_t ...... for 1tuI .. for ...... for 

:e Weuuremellta 'taM ... Satellite Ephemer.a ItIIM ... At'S-S At'S-1 At'S-' 
(Me\era) (Metera) (Metefl) (M .... ) (Mete .. , (Metera) .~ 

23 Saullleut 0.13 846 -77 

I.M 0.14 ".8 

7.65 0.14 871 - a 

7.18 0.15 887 -sc 
7.87 0.12 ..... 5 - .7 

182202 774 8.013 0.14 .... 80 -. 
7." 0.15 .... 18 -M 

April 1'.14 0.12 .... 30 a8 

14 181702 11$. 19.1' 0.11 .... 13 630 
1971 22.27 0.1t -410 6» 

11.32 24 Sau1heut 0.12 .... 55 .14 

181202 1373 14.65 0.15 ...f4Z K 

12.4' 0.14 -437 .70 

1370 16..09 0.11 -433 .75 

L-Band IQ A t'S-6 oy,u 1753 16.76 27 Sou1heu1 0.20 -518 "3 

*'" 20 . C- Bud IQ At'S-1 182201 173l' 12. 28 0.18 -482 '%8 
c:.n 1971 

0 18180S 1635 18.01 28 Sau1heut 0.18 -4" 821 

1627 17.14 0.17 -412 822 

17.65 0.18 -4'2 827 

11. 88 29 Sau1heu1 0.15 ·539 214S 

April 181102 4045 18.64 0.17 -517 2718 
22 182001 4144 19.80 0.17 -411 2.7 

J9 71 
18.30 0.18 -355 287.: 

16.56 32 Sau1heu1 0.18 -477 8705 

16. 58 0.20 -445 

17.83 0.18 -425 

18. 03 0.1' -408 

17.13 34 Sou1heu1 0.17 -3M 

I 25.37 0.14 -352 12238 

1'.54 0.14 -Sit 12311 

0.3' 0.11 -It. 12475 

13.81 24Sau ....... 0." 137. -42' 

13.74 23 Sautheul 0.05 13M -435 

I3.M 0.04 1311 - -t2!o 

11.30 211 Saul-" 0.114 "1 -~'.i 

VIIP IQ ATS-~ 
June 165000 528 13.&1 0.08 378 -245 

11 
C-Bud IQ At'S-1 1971 

le5500 524 1".62 0. 0. 365 -241 

19t1OOO 531 29. 00 O."'~ 3tt -232 
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Finally, the station locations calculated by inserting into the program . 

the ranges obtained from satellite ephemeris are tabulated. This information is used 

mainly as a check on the validity of the position location procedure. It does not reflect 

the accuracy of range measurements or the accuracy of the satellite ephemeris .l'his will be 

discussed in more detail in paragraph 4.4.4. Also listed in table 4. 6 is the scatter of 

possible station loc ations about their mean • 

Figure 3. 8 shows that the station poaition obtained from typical Land 

C-band range measurements is roughly 800 meters from the actual position. With 

good satellite ephemeris, this error varies from 800 meters to about 1300 meters. 

When old satellite ephemeris is used, results can be much worse, as discussed in 

paragraph 4.,4.4. Scatter about the computed location, for the example shown in 

figure 3.8, is about 8 meters, so position location precision is quite good. The 

scatter for most runs is less than 20 meters. 

Figures 4. 20 and 4. 21 and table 4. 6 show that position location accuracy 

using VHF and C-band range measurements varies from about 500 meters to about 1700 

meters. 

4.4.4 Analysis 

Examination of the position location plots revealed th9.t there is very 

little scatter of possible station locations about the average position. This indicated 

that thermal noise and short term jitter in the equipment had litUe effect on our 

capfl.bility for position location. The RMS scatter for most runs was less than 20 meters. 
i 

Accuracy of position location, measured by the difference in meters bet-

J/ ween. the calculated and actual station positions, was determined more by the satellite 

ephemeris accuracy than the ranging accuracy. Range :measurements Were affected 

by propagation effects, station zero set orrors, and station antenna placement. With 

the exception of the VHF measurements, propagation effects are believed to be small 

(on the order of 10 meters) compared to other error sources. Zero aet inaccuracy has 
> ,-;- I 

alrea.dy been discussed in paragraph 4.1. 2. The 120 met~r range error due to zero 

iCset inaccuracy in the L-band equipment Iwas compensated for prior to data precessing . 
. ,\ 

Therefore, this error does not contribute to position location inaccuracy revealed ~n 

the plots and in table 4. 6. 
Section 6 of this report discusseigeffects of antenna placementat 

Mojave on range measurem~nt~ and position location •. ' It is noted that the followin:~ 

po,sition 10~ation distance errorr:!) ()ccurr~das a "result of the antenna separatio~,s: 
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C-band to ATS-1; L-band toA'l.'S-5:100 lI~letel'S 
C-band to ATS-1, VHF to A'I'S~8. 60 meters 

r~ ... " 
r? 

VHF to ATS"rl, C-band to .tVI'S-.3:" 15:tnaete.rs 

Table 4.7 presents the corrections inlatitude an.d longitude which. must be applied to 

the calculated coordinates for precise position location. Comparison of these values 

with the position errors listed in table 4.6 reveals that the al1terma separation was a 

relatively insignUicant source of position location error. In fact, these corrections 

tended to slightly increase the positiofi error in some cases. 

TABLE 4.7 POSITION LOCATION CORRECTIONS DUE TO ANTENNA SEPARATIONS 

Ranging Systems Latitude Correction ".Longitude Correction .-
C-Band to A TS-1 25 meters north . \ 98. 5 meters west 
L-Band to ATS-5 ! 

" : 

C-Band to A TS-1 56 meters south 22. 5 meters west 
VHF to ATS-3 

VHF to ATS-l 139 meters north. 62. 5 meters west 
C-Band to ATS-3 

Satellite ephemeris inaccuracy was the major source of position 

location error in this experimen!; Sample range.,..ve~sus-time 'curves are shown in 

paragraph 3.2 .. 3.1, Figures 3.10 and 3.11. These figures compare C and L-band 

range measurements with the <!orresporuHng ranges obtained from satellite ephemeris. J . . 

Table 4.6 summarizes these resultslifor all runs.L and C-band range measurements 

differ fromrphemeris range by a few hundred meters typically ,and this explains to a 

large extent the position l~ci!tion ina,scuracy. Consider, for example, the ranging 

data obtained March 25,1.~171 (see table 4.6). The difference between L."band range 

to ATS-5 and the corresponding, ephemeriS' range was about 480 weters. This error 

alone would yield a position location error of roughly 

4:80 meters = 
cosine (elev~tion angle) 

480 meters == 710 rtleters 
. ~os . ...,.( 4"-'7="':;';;'5';"0,"",)r--

j 

This isnear~y equal to the computed position locatioh error of 774 . 

meters on that day. The remaining 60 meters errOr . is Clue to the small difference 

between C~bfindand ephemeris range to ATS":;l and to the other error sources . -,' ;,' 

. mentioned above. \;Simihir results are obtained for the other tests listed in table. 4 .. 6. 

The diffe'rence between measured and ephemeris rang;eoscillated' with a period of 
• '-' \\.:' , ,. ',' ~' '~">' 

about one day. Therefore, th,~differences are a,ru~c~ion of the, time of (lay I and one" 

would expect position l(jcation errorstobehav'~ itl as:imilli!-r mauner. That this 
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behavior was not observed was a consequence of the fact that all measurements w~re 

made at about the same time of day. 

The poor position location accuracy obtained with range measurements 

in the latter part of April was du:e to the fact that the satellite ephemeris was almost 

one month old at t.hat time. Table 4. 8 lists the dates for range measurements and the 

corresponding epochs for the satellit0 ephemeris. If the epochs given in this table are 

compared with the station positioil errors listed in t~Lble 4.6, it becomes evident that 

there was a correlation between the position location errors and the time interval 

TABLE 4. 8 MEASUREMENT DATES AND .El">HEMERIS EPOCHS -------... --------r-------.....,.",.-------, 
Range Measurement Date 

March 24 
March 25 

April 14 
April 15 
April 20 
April 21 
April 22 
April 26 
April 28 

Satellite Ep\i.emeris Epoch 
".------...... -----...;,;,.~ ....... -

March 10 

March 31 

----------------------------~--------------------~---June 10 
June 17 

June 10 
_-...-________ -...-_ ....... __ __t .. __ • _______ _ 

between range measurements and satellite ephemeris epoch. It was very difficult, 

therefore, to compare the accuracy of Land C-band position locatiQuwiththe 

• ..0 accuracy of VHF and C-band position location, unless the range rneasurements were 
~ .: 

performed on the same day and, ideally, the same hour. 

Figure 4.22 is a typical position location plot corresponding to ATS-l 

"I and ATS-3 range values obtained from satellite ,ephemeris. Th~se plots were made to 

verify that the position location procedure is compatible with the Goddard orbit 

determination program. Ideally, when ephemeriE ranges are inserted in the position 

location program, the calculated station coordinate's shoUld be identical to the actual 
I 

station coordinates r~gardless of the accuracy of the ephemeris. The fact that the 

two sets of station' coordinates' differ by 20 to 3q meters indicated that either there are 

small round.., off errorS involved in computing station coordinates, 
,. ..",~ I . 
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differences in physical constants (such as the earth's radius or the speed of light) used 

in th..'e orbit determination and position location programs. This position difference can 

be considered as a lower bound on possible attainable position location errors. 

Finally, the precision with which station position can be determined is influ­

enced by the geometrical arrangement of the station and the two satellites. Table 4.6 

shows that the ultimate preCision (discussed in the last paragraph) was higher when 

ATS-l and ATS-3 were used for ranging, rather than ATS-l and ATS-5. This was 

because A TS-l and A TS-3 were widely separated in longitude, which means thit the two ~ 

)/ lines of position intersected at an angle close to 90 degrees. On the other hand, the 

lines of position obtained from measurements to ATS-l and ATS-5, intersected at a 

small angle. Noise added to the range measurement$ or round-off errors in the com­
i) 

puter programs would, therefore, i1?~rease the scatte'r of possible station positions in 

this case. 

4.4.5 Conclusions 

This experiment demonstrated a capability for determining the position of 

a station on the earth's surface by ranging simultaneously to two synchronous satellites 

from the station. Accuracy was limited mainly by the accuracy and age';bf the satellite 
i1 /' 

ephemeris. With recent updated ephemeris from the present Goddard orbit determini~ 

tion program, it is possible to locate the station to wiJbin one or two kilometers with 
J/~' 

C-band and either L-band' or VHF range measurem~nts. With accurate ephemeris 

data it would be possible to perform position location to within 100 meters using 

this position determi/fllltion progra:m~. The scatter of possible station positionS due 

to thermal noise or equipment jitt~~:f' was generaUy less thap. 20 meters, which ' 
~r \'l~ __ 

implies excellent pOSition locatioli preciSion. Other sources of error, such as 

propagation effects are small compared with ephemeris inaccuraci,es, so their 

effects on position location W;(jre not analyzed in great detail. Improved satellite 
C) 

'ephemeris would permit a more careful analysis of these other error sources . 
, 1.,\", 

Ultimate position location preciSion is affect'6d by the geometry of the 

situation. When ephemerisrahg~ values were used in the position location program, 

station:sca1;ter was less than 0.10 meters ,rms when ATS-l and A'l'S-3 Were used,and 

O'r 10 andO.20 meters whenATS ... l a.nd ATS ... 5wer~used'for position location. \~, 
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SECTION 5 

STATISTICAL ANALYSIS OF, RANGING ERRORS 

STATISTICAL INFORMATION OBTAINED FROM RANGING 

MEASUREMENTS 

In addition to the information concerning range measurements described 

in Sections 3 and 4, certain statistical information concerning various range errors 

was desired. Unless otherwise stated, the range error is defined as the difference 

between a second order Po.lynomialleast squares fit to the range measurements during 

an approximate three-minute time interval and the actual range measurements (which 

is also a 40 msec average) at a given time duri!lg the same three-minute time interval. 

The coefficients of the polynomials are obtained using the ''method of least squares" 

from approximately 180 measurements during a three-minute time interval, (the 

L-band measurements are actually made approximately every 790 msec) for both 
1 

simultaneous L-band and C-band, or C-band and VHF range measurements. 
" 

Sirnultaneous measurements, a~ used in the previous sentence mtlans measurements 

obtained within one second of each other. A pair of polynomial coefficients is 

therefore available defining curves for range versus time for both L-band and 

C-band range measurements or C-band and VHF range measurements for each ~hree­

minute test interval. The difference between the le;:tflt squares polynomial curve and 

the actual measurement for ~orreSPohding times i~~~f~edas the range error audit 

is statistical informatioll concerning,these errorswbich is sought;" Specifically it " 

is desired, to determihe: 

The mean squareq error of the range measurements. 

If range error is caused by propagation anomalies common to 
r .~,: 

G.-:-band, L":barid~ or VHF carrier frequencies.liL' 

3) 'l'he f.nagnitude ;f'the noise power reduction achieved by using a 
. II'. > •• ..,.. 

() 'f~(}Q~gr;~)e leastsquare~ POl~6mial curve approximation to. 

Y.the:raw data " .-:.~ .. ' -<" •• . 

/I 

lFitzhugh,H. S. II, "ATS-5 L-Band Ranging and Position L6cation Experiment pian" !. 

lUly 1970, Westinghous~ ElootricCol'Po.ration, pp. 26-29 ~ 

5.1 ' 



, f 

4) The mean range bias for L-band and VHF range measurements as 

compared with C-band range measurements. 

5) If the L-band range errors contain periodic components at 

multiples of the spin period of the satellite (790 msec) or periodic 

components at some other frequency. 

6) 

7) 

If the actual range jitter follows the theoretical jitter as a function 

of the link signal to noise ratio. 

If the range error is gaussian and if not how the range errors are 

distributed. 

5.2 ME THODS OF OBTAINING THE DESIRED STA TISTICA L 

INFORMATION FROM THE RANGING ERRORS 

The statistical information oIl,ithe ranging errors is obtained by computing 
, " 

and graphically disph=l.ying the followtngilfunctions: 

1) 
"- ,,_.. ~;. L 

The autocorrelation functions, 

cP 11 (T) = lim 
T- oc> 

1 
2T 

T 

£ 
of the ranging errors fl (t) as a function of time displacement l' 

for each three minute test interval. 

The autocorrelation function of the range errors cP 11 (1') is co~puted and 

graphically displayed so that the variance of the ran,ge error can ~)e estimated -1lld 

periodic components in the error detected. The autocorrebtiGitfunction of the 
", 

error will always be symetrical about l' == 0 and the magnitUde I cP 11 (;)/ of 

the autocorrelation function at l' = 0 is proportional to, the square of the :range 

el'ror (meters)2 and also proportional to the power in the: range error~ If the error 

contains periodic co~ponents, these components willf.oause cP 11 (T) to have 

periodic. components. If the error does not contain pci1riodic comp onents, cP 11 (1') 

tends to the mean value as the argument of the rang~ er';ror 1'. tends 

to infinity. For errors with zero mean, I <P 11 (T) 1\ = o. T-'~oo 
A9,dition gen,eral characteristics of continuous}lautocorrelation functions 

'are given in' Lee. 1 ' !j' 

2) rhe crosscorrelation of the L-band andhC-band or VHF and C~band 

r3.nging errors as a function of time displacement for each three­

mip.ute test .interval. 

The crosscorrelatlon function, T 
..I.. .' (T) = Ifni I! '. 

.. 'I" 12 .',' 2T . 
// .... T+oo .. -T . 

-l-L-e-e-, -y-"",: . w.)!st~tisti-Gal Theory of Co~mlmication " .. 
John Wi1«t~/&Sons, 1960,pp. 73-74 

,( I, 
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of the ranging errors is also computed and graphically displayed so that the ranging 

errors obtained at one carrier frequency and with one set of equipment can be:compared 

with ranging errors simultaneously obtained at a different carrier frequency and another 

set of ranging equipment. The crosscorrelation function is a measure of the coherence 

between the two random or correlated range error functions f1 (t) and f2 (t). For two 

random range error functions which are independently generated, crosscorrelation 

yields a constant which is the product of the individual mean value of the two random 

error functions. Under this condition the error functions are uncorrelated. In case 

either fl (t) and f2(t) has zero mean value, the cross correlation function is zero for 

all T • If two random functions are uncorrelatedJ cP12 (T)=0, they will not, in 

general,be statistically independent unless, for example, they are gaussian and real. 

If the errll·r functions f1 (t) and f2(t) have periodic components of the same fundamental 

frequency, crosscorrelation yields the same fundamental frequency and the same 

harmonics which are present in both f1 (t) and f2(t), together with their phase differences. 

The croBscorrelation funotion does not imply that if the measurements are highly corre-
'. 

lated there is a causal relationship between the measurements. However, some common 

propagation phenomena could be affecting both sets of measurements Simultaneously, 

causing cornmon.frequency perturbations in the measurements. When the responses 

or meaeureIIlents are highly correlated, it is possible to predict one fro:m the other. 

3) Scatterplots of L,-band versus C-band range measm:ements or 

C-band versuS VHF range measurements to a common satellite. 

The scatter plots of the L-band range versus Cl:::)J~nd range provide a 

sample by sample comparison of Simultaneously obtained range measur~ments. 

Because the L-band range measurem.ents are obtained apprOximately ev...etsr 790 msec, 

when two measurements fall within the same one-second time interval, th¢two 
-H' <-

measurements are averaged and a Single value !abulated for that one-second. interval. 

A best fit line through the points should show ~(slope of one meter/meter,or 459 

when the ordinate alld ,abscissa are drawn to the same soa..1e. From these plots one 

can determine: 

',:.. 

• If the C-band and L-band measurements are traCKing over 
" 

the test interval. If not, the best fit line will be at a different 

.• , ~lQpe, or the differences, in individual rangemeasul'emen'l:s 

will show a wide scatter about tbe i~est fit"'stmighf'line~ 
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• The intercept of the best fit line with either the ordinate or 

abscissa gives a pair of numbers; range as measured at L-band 

and range as measured at C·-band. The difference between these 

two numbers is the "best-fit" zero-offset between the two ranging 

systems. 

• Curvature of the best fit line indicates that comparative ranging 

performances for the two systems is changing with time, probably 

because of frequency drifts in the two systems. 

• A large scatter about the best fit line is indicative of a large noise 

(error) component in one or both range data,and peak deviations 

from the best fit straight line measure the peak differential range 

error. 

• Clustering of points is indicative of "p:ref~rred" range errors, 

which could be caused by the data processing program or the 

ranging equipments. 

4) Probability density distributions of range measurement error. 

To determine the na.ture .9f the range errors the probability density distribution 

of the range measurement error is computed and graphically displayed. From this 

type of display, mixtures of both normal and non-normal error sources may be 

detected. If there is a single, non-normally distributerlerror source, which would 

be caused by a system error source, then the density curve will show a single skewed 

peak, with minor sidelobes. If there is more than one normally distributed source of 

error, each having a differ,ent mean, then the density curves will show more than one 

peak. This could be an indication that errors ar.~ being caused by both normally 

. distributed ionospheric range jitter and random errors in the ranging equipment or by 

data reduction. If the sidelobes are not normally distributed, then errors that occur 

on the tails of tbG .Immulative distril;mtion can be attributed to equiplnents or the 

... ! limited sample sizes. Loss of lock, or a stmilar equipment problem, will c.ause 

spiked distribution near each rangeli.mit point (+ 1800 from phase lock). 

Thedensity curves also shown the relative magnitudes of each source of 

error, assuming that ea-ch sidelobe is caused by an independent source of errors. 

The relative standar!;l devi~tions pf the distrIbution, as seen ort this presentation, are 
"_/'1 ': '<--,' '2 

the relative magnitudesolcthe error sources. The standard deviation oithe central 
; '\. 

distribution is a measure of the range precisiQri' in the presence of thermal noise 
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only in the range error. 

The salient features of the probability density presentations can be 

summarized as follows; 

• 

• 

Thermal noise, atone, causes the distribution to have a single 

peale Any offset of the peak from 0 indicates that the ranging 

equipment contains a systematic (constant) error. 

Loss of lock in the ranging equipment causes the density funchon 

to contain peaks other than the one at class zero. 1 These peak::; 

will be at the most commonly encountered range errors, which 

can be related to the range that would be obtained for locking tlw 

ranging tones in phase quadrature or 1800 out of phase. 

• Variations in the range bias from test interval to test interv'~! u'e 

exhibited as variations in the zero offset from run to run. 

• Numerous small sidelobes, or hash on the distribution, which 

is not at the error ranges, indicate that the errors are being 

generated by a mixture of mechanisms such as slipping out of 

lock, as differentiated from false locks which generate the 

patterns mentioned previously. 
5) Cumulative probability distributions of range measurement errOi.'s. 

If the errors in the range measurements are normally distributed, IF.e 

graphical displays of the cumulative probability distributions will be a straight line. 

This is so because the cumulative probability distributions are plotted against the 

integrated gaussian density function, (error function erf) so as to magnify the 

diffe;rence between the actual cumulative probability distribution~ and a cumuLltive 

gaussian distribution. This method of presentation offers a simple check on whether 

range errors are normally distributed. If the error distribution is caused by thermal 

noise alone, then this distribution should be a straight line. If the distributioh has 

mQr-G than one slope, particularly when one compares the slope near 50W, with the f' 

slope near 90%,then the errors are being caused by more than one error source. 

However, the "tails" on the distribution that may exist below 10% or above 90% 

IThere are 16 "classes",spanning 100% of the range errors associated with a test inter­
val. The magnitude of the range error associated with Ii given "class" is related. to 
the "class numbe.r" by the following expression: .. , .. ,.:. .~ 'Y,'i . " 

Range. Error for Class N = [BIN SIZE X N] meters"" 

5.5 



'.'i-'!.1 
> I

I .. '., , 1 

, 

j '~/' 

,j 

'~, 

cumulative distribution mayor may not be representative of the actual error 

distribution, in that the distributioll is obtained from a limited set of data points. 

If the distributions are not linear, the non-linearity can be attributed to one or more 

of the following effects: 

• Errors caused by a single error source, that are not normally 

distributed. 
'" A combination of two or more normally distributed error sources, 

one contributing the maximum excursions from the mean error, 

and one that defines the shape of the central portion of the total 

error distribution. 

5. 3 ANAJ-IYSIS OF SAMPLES OF ACTUAL RANGING DATA 

For the purposes of this analysis, three computer generated statistical 

presentations of ranging and ranging error data have been selected. Example 1 is 

typical of the majority of the results obtained during the test program. Example 2 

illustrates a case where the C/N in the ranging receiver is low. Example 3 is a case 

where the L-band and C-band ranging tones are not coherently related, since the 

L-bap.d tone was not derived from the A TSR tone generators. (Mode 1 operation). 

5. 3. 1 Example 1 ~ Typical Results - Run of 4/15/71 at 1000 watts on L"::aand. 

The data shown in figures 5.1 through 5.5 are representative of data 

:' ' 
, " 

7 

acquired during runs when all equipment was operating properly, and where system tc 

performance was not significantly reduced by thermal noise. These presentations ii 
/' 

are typical of those obtained when the rms errors onbi'thsystems were small, as 

was the case in 40 of the 65 test periods. 

Referring to figure 5.1, the L-band autocorrelation peak at T = 0 is 

approximately 38, while the C-band peak at T = 0 is approximately 7.8. These 

numbers can be related to the standard deviations by' the expression 

Ii, = ~2, "ct> (0) Ll R " meters 

In tal?le 4.1, paragraph 4. 1. 3, ,the standard deviations, ,as calculated from 
>-/ -

the' autocorrelation' functions, are: 

fTc c) = 3.95 

and 

fT = 8 7 L .', & 

meters 

meters 
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while those shown in the table are: 

fT = 
C 

meters 3.97 

and 

8.72 meters 

This indicates that the computed correlation functions are correct. 

Both the Land C-band error signals show periodic components, but the 

basic frequency of these components are on the order of 1/5 Hz. Further, the periodic 

component is less than 10% of the correlation spike, indicating that this 1/5 Hz 

periodic error signal must be at least 10 dB below the random errors in rms power. 

The 1/5 Hz frequency component in the L-band autocorrelation of the error has been 

identified as tre 20-second time constant in the ranging demodulator. The periodic 

component in the C-band autocorrelation of the error is probably generated from the 

digital sampling rate of the ranging signal. The random nature of the errors causes 

small sidelobes to occur at the sampling rate, and the lO-dB figure is a measure of loss 

in error pattern correlation for L-band range signals. 

The crosscorrelation function of figure 5.2 shows no peaks at levels in excess 

of those that would be generated by crosscorrelating two statistically independent data 

streams. This indicates that the errors during this 2-1/2 minute test interval were 

not caused by common ionospheric propagation anomalies or equipment problems 

common to both ranging systems. This also indicates that spin modulation was not a 

common error source for the L-band and C-band ranging measurements and that 

there were no unstable tones from the tone generator in the A TSR equipment. 

The scatter plot of C -band range versus L-band range shown in figure 5. 3 

indicates good range tracking at both the L-band and C-band carrier frequencies. 

Using a best fit line, the range at L-band appears to be 140 meters longer than the 

l'allge at C-band. The worst case peak-to-peak variability in range is approximately 

40 meters, indicating that, except for the zero offset caused by the error in the "zero 

set" at calibration, the range signals should not vary more than ~ 20 meters -Jith 

respect to each other. Figure 5.4 is a graphical display of the range error probability 

density distributions for this test interval. The first signific,ant observation is that 

at both L-band and C-band'~e errors are not "normally" distributed about the offsets. 

The C-band range errors h9.ve a major peak at class numb~r 2 (2x 1. 4= 3.8 meters), 

or 3.8 meters longer than the meall error. They also exhibit minor peaks at class 

5.12 



"j; 
'\ 

I 

)' ~ , 
j, 
I 

I 
I 

< j: 

, ' 

r 

numbers +4 and -5, or range errors of 5.6 meters and -7 meters. Since a wave­

length at 20 kHz is 15 kilometers, these subsidiary peaks are not caused by locking 

in the wrong phase (a 180
0 

phase error is a 3.75 kilometer range error). There 

are either error sources which do not produce normally distributed errors, or a 

number of tlnormallytl distributed sources, which contribute to the C-band ranging 

errors. 

The L-band range error probability density distribution shows that the 

range errors ranging from -9.24 meters to + 6. 16 are equally probable. Beyond 

this error interval, the L-band error probat.~ility density is comparable to the C-band 

error density. With the limited data used in 1,\.Ccumulating these density functions, it 

would appear that the error distributions at tM, two frequencies are the same except 

that the L-band error density function is appro~~;1:rnately twice as wide as the C-band 

error density function. Even the sidelobes exhiMted in figure 5.4 may be caused by 

truncating the data set. 

The cumulative range error distributions shown in figure 5.5 verify the 

hypothesis that the actual error distributions are the same. However, the errors in 

the L-band range data are about twice the size of the C-band range errors. The 

. distributions are very flat across the range between 25% of all errors and 

75% of all errors, indicating that errors within these bounds are equally likely. The 

extremely sharp tails, above 90% and below 10% of all data, are certainly due to the 

limited sample set. Limiting the set to a finite number of points always causes these 

sharp tails, which are due to the extreme values in the sample set (maximum 

negative range error and maximum :positive range erro:t;) for the test interval. 

In summary an analysis of the statistical presentations for this test interval 

has revealed the following: 

1) The L-band range data contained a random error component that has 

four times the power in, the C-band error data. 

2) There appears to bf') somf': intersymbol influence in the digitiz~d\!L-band 
range data. This component was small, relative to random errors. 

3) There are no observable prop~gation anomalies, at either frequency, that 

"contribute to the range errorS~ during the test interval. 

4) A periodic frequency compon.ent ~~dsts in the L-band rangipg measure~ 

ments du~ to the ~o-second timElcon..<;jtaIlt:of the range dem~ulator. 
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5.3.2 

A periodic frequency component also exists::cin the C-band ranging 

measurements, which is proBably due to th~;- signal sampling rate of the 

ATSR system. "'" 

Satellite spin is not causing ranging ~£rors at either the L-band or the 

C-band carrier ft~quencies. 

5) Both L-band and C-band error distributions were similar, and show 

6) 

7) 

8) 

that there was more than one norLnally distributed error source in both. 

However, the L-band error peak covers an error range that was about 

three times as large as the error range for the C-band data. 

Limited sampling distorted the cumulative probability distributions. 

The range errors were not biased, other than an offc,~t in the initial 

zero calibration, indicating that the tlbest fittl ranges were not biased. 

The mean range to the spacecraft, as measured at L-band, was 140 

meters lo~er than the C-band range to the sp~cecraft due to the 

previously mentioned zero set calibration error. This could easily 

be removed by the initial tlzero settl calibration. 

Example 2: A Case'Where the L-Band C/N is Low at Both the Spacecraft o 

and the Receiving Ground Terminal. 

Figures 5.6 through 5.10 are plots derived from a ranging test run on 

4/27/71, with 16 watts of L-band power transmitted from the earth station to the 

spacecraft. This is a condition where the C/N in the ranging recetver is low 
-~ 0 . 

because the transmittet.:(power from the earth station will not saturate the S/C 

transponder. 

The autocorrelation function, figure 5.6, shows that the power in the error 

component of the L-band data is 50 times that in the C-band data, because the 

L-band ranging system is operating near its threshold. There are no significant 

sidelobes in this f~~ction, other than those caused by the sampling rate, so spin 

modulation is not introducing a. periodic error. The random sidelobes in the L-band 

autocorrelation function of the range errol'S range data are significantly larger than 

. they were in example 1 because of the increase in the random error power at L'7band. 

The crosscorrelation function of the C and L-band range error is essentially 

zero for all T, figure 5.7. This shows that the L-band errors are not correlated 

. with the C-ba.nd error!), thereb~ ruling o~t the possibility that· some of th~L;;pana 

errors are ca-qs¢dpy propage~tion ~~"noihalies durmgthis test interval. ,/ (?' 
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The scatter plot, figure 5. 8, illustrates how the spread of datu about the 

best line increases as the received C/N decreases. This is equivalent to saying 
o 

that the correlation coefficient is less than it was in example 1, or the L-band range 

data is noiser than it was. Peak-to-peak variations of almost 200 meters can be seen 

in the range data, as compared with the peak-te-peak variations of 40 meters shown 

in example 1. 

A best fit to the scatter plot shows an equipment reAated problem. The 

L-band range at low C/N is approximately 130 meters less than the range at C-band, o 
whereas it was 140 meters more aihif;ih C/No' This problem has been traced back 

to a defective analog shaping filter in the L-band ranging equipment and has been 

corrected. 

The probability density curves, figure 5.9, show similar shapes for both 

the L-band and C-band errors. However, it must be remembered that a single bin 

represents a 20-meter range error at L-band, while it represents only 1. 7 meters 

at C-band. If the L-band bin slze were made 1. 7 meters, then the density functions 

would show equally likely L-band errors over a 1.'ange of ~ 8 bins (2:12.5 meters), 

with peaks at the end of the density function for all L-band errors outside this range. 

The peaks in bin numbers -41 1, and 5 seem to be characteristic of all 

density functions, regardless of C/N. Conversely, if one :made the C-band bin , 0 

size 20 meters, which is equal to the plotted L-band biP .. size, all the C-band data 

would ~all in bin O. The C-band errors would then look normally distributed, with 

a variance much smaller than that for the L-~?n~rd~l~~' 
This peaking in selected bJns indicait~s that,in data processing, there is a 

> '! ':-.-

preferr~d error bih, probably because of how the/data processing program was 

written., RDne compaTes example 1 with exam?le 2, the error densityeurves are 

similar~ despite the change in scale from tlll,'et~ -lTIeters/bin to' ,20 meters/bin from 

figure 5.4 to figure 5. 9. 

As would be expected, the cumulative error distribution (figure 5.10) at 

the two frequencies a:re similar, and they are similar to the distribution shown in 
I' 

figure 5.5 for example 1. However, in this case, the flat area in the middle of the 

distribution spans an L-band error range which is at least three times larger than that 

shown in example 1. The tails ark due to limited sampling, while the curvatures 

at 30% and 80% niay be caused bymultimechanism error sources. The fact that there 

is more than one error mechanism and that errors near the mean range are not normally 
distributed, are shown in figure 5.9. 
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The principle conclusions of this analysis are: 

1) Range bias reverses polarity as the signal to noise decreases, and 

the I.-band range becomes shorter than the C-band range to the S/C. 

The cause of this was a defective active baseband filter in the 

demodulation channel of the L-band ranging receiver. 

2) 

3) 

4) 

Processing techniques appeared to be generating peaks in the error 

density function which were independent of the bin width. 

At 16 watts transmitted power, L-band range errors from -40 to +50 

meters were nearly equally probable. 

There were no observable range errors caused by the spinning of 

A TS-5, pulse lock, or prop;:Lgation anomalies. 

Example 3: Mode 1 Operation, Where the 20 kHz Range Tone in the L-Band 

~9uipment is Not Coherently Related to t~e]tange Tone in the ATSR C-Band 

EquiEment. 

During Mode 1 operation the L-band ranging tone is not readily available 

from the A TSR equipment, because the A TSR range tone frequency is 500 kHz and 

the L-band range tone frequency is 20 kHz. The run of 4/21/71, with 64 watts 

transmitted to the S/C at L-band is typical of such a situation, and will be analyzed 

to determine the effect of using non-coherent tone sources. 

Before beginning the actual analysis, certain general effects' should be expected. 

They are aa follows: 

1) If the L-band range tone frequency is stable at 20 kHz +0.1 Hz, and 

it is phased properly during setup, the range offset should increase 

by O. 5 part in 105, or about 160 meters. 

2) If the L-band phase tracking system is locked 1800 out of phase with 

a 20 kHz tone derived from the A TSR equipment, the L-b~ind range 

offset will change by about 3.75 Km. This is an error of A /4 for 

the 20 kHz tone. 

3) For the same C/N , the error noise power will be the same as that o 
Ipeasured during Mode 5 operation if the tracking tone generator is 

stable. If it is not stab1e, the ~rror noise power will be larger than 

that;,measur~d in Mode 5 operation. I"~ 
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4) An actual frequency offset of the L-ba,nd tone source from 20 kHz 

will cause a periodic component in the L-band error auto-corre­

lation function. A phase offset will not cause periodic compo-, 

nents in the L-band error autocorrelation function. 

5) For the case of drifting phase, the error density function should 

be flat over the drift range or show peaks at the maximum 

excursion. 

Reference is made tq the range ,error autocorrelation function, figure 5. 11, 

and table 4. 2. The large spike at ; = 0 in the L-band data is due to a sum squared 

error power which is four times as large as that observed during Mode 5 operation 

at the same CINo (See Table 4.1, for April 22, 1971). At this noise level, any possible 

inters ample influence is masked by the random en' or components in the range signal 

and the periodic components introduced by the tone source providing the L-band modu­

lation. The larger spike at ;=0, and the larger standard deviation shown in table 4.2, 
both indicate that random phase modulation of the external tone generator is causing 

half of the ranging error. The distinctive periodic compcnent in the error auto­

correlation function shows th~l.t the random phase modulation of the source is, . ' 

partially, caused by a periodic component in the phase errors of the tone generator. 

These pariodic components can probably be attributed to phase modulation of the tone 

generator and the 20-second time constant in the L-band ranging demodulator. 

The fJrosscorrelation is essentially :r.ero on the ordinate scale used in 

figure 5.12. This shows that, to the resolution offered in this figure, error sources 

are not correlated. The potential sourcesofcorl'elated errors between the two ranging 

systems are propagation anomalies and the spinning of ATS-5. Figure 5.12 shows 

that neither propagation anomalies nor the spinning of ATS-5 is a"'significant 

contributor to the L-band ranging errors. 

The scatter plot, figure 5.13 is similar to the one shown in figure 5.3 for 

example 1, except for the range offset (range bias error) and the slight scatter of 

points about the best fit line caused by the lower C/N. Pea.k-to-peak errors are on 
o 

the order of 100 meters, as compared with tJ,le peak-to-peak errors of 40 meters 

shown in example 1. Further, the zero offset is such that the best fit C-band 
. ; ' -'. .:! 

:range is 3,700 meters longer than the best fit L~t1alUd ran:g~. In ,normal operation, 

the G-band range is 140meterslel?s th~n the L-ba1~I$/ra~~e~>'ThiS would indicate 
"; _ _ - ~/ ,t,:; -0 . "\. _ "-2 . ~ . " 

that either the L-band, range tone is 180 out of phas:~Jrom nominal zero or that 
r_ 'I' 
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the processing equipment has generated a false set of lanes. If it is a phase offset 

,roblem, then it is associated with the zero set procedures used during equipment 

alignment. At any rate the externally generated tone can be said to have more 

noise power than the ATSR range tone, and it is stable to better than 1 part in 

105 in phase during a run. The frequency stability of the ATSR system was 2.7 

parts in 107• 

The error densH~y functions and the cumlliative error distributions, 

figures 5. 14 and 5. 15 ,have the same sha.pes as those shown in figures 5. 4 and 5. 5 

for example 1. Note that the density curves are plotted on different scales, an 

L-band error bin, 01 ~;.~ ,~,SJ being 12 times as wide as a C-band error bin. The 

densities within bins -8 and +8 are so close to those for example 1 that it is suspected 

that the error densities shown in figures 5.4 and 5.14 are caused,to some extent by 

the data processing programs. 

5.4 CONCLUSION CONCERNING STATISTICS OF RANGING 

ERRORS 

By way of three illustrative examples, it has belen demonstrated how 

various statistical information concerning range errors has been obtained. These 

statistics are, of course, for specific time intervals and say nothing about "all time 

intervals." Except for the physical phenomenon of signal multipath (which was not 

within the scope of this experimental effort), various signal levels, signal to noise 

conditions, and system configurations were created and range errors resulting from 

these conditions statistically analyzed on a ~hort term basis. 

Under best L-band signal conditions it was found that the average rms range 

error precision was approximately ± 20 meters. The theoretical signal to noise ratio 

for a time jitter of 131.2 nanoseconds corresponding to the ± 20 meter range error is 

34. 8 dB for the 20 kHz ranging tone and agrees well with the design resolution 

capability of the L-band ranging equipment. ~he magnitude of the auto correlation 

function at T = 0 indicated that the. rms range error was 8. 7 meters for L-band 
, . 

measurements. This would indicate a better than average signal to noise ratio for 

maximum power conditions. ii:hiD variation in SiN ratio is attributed to slight antenna 

pointing errors. 

Of the specifictill1e intervals examined? no evidence was found of ranging 

,err~rs causoo by propaga~~L~n aI;1omali~s common to the C-ba~, L-b;md. or VHF 

carrier frequencies. ~';.. l · ~ . 
, 0 

j\ 
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SECTION 6 

MOJAVE GROUND STATION ANTENNA LAYOUT 

The antennas at the Mojave ground station are physically separa'i;ed from 

each other by a distance that can make an appreciable error in the simultaneous rang­

ing measurements. This section is an analysis of the station antenna layouts and the 

path geometry for this series of experiments. 

Figure 6.1 is a layout drawing of the Mojave ground station showing the 

positions of the various antennas used in this experiment with respect to each other 

and to the operations building. The exact locations of the three antennas are listed in 

the table of this figure. The fourth entry in the table is the location of the Mojave 

station used in the Goddard orbit determination program. That position is given in 

the determination program as 116.8880 longitude and 35. 3320 latitude - geodetic 

(35.1500 latitude is u.::;ed here while the corresponding geocentric latitude must be 

used in the position location experiment~. The coordinates listed in the table were used 

to locate the points for the ~mtennas in the station layout and to calculate the distances 

represented by the dotted lines shown in this figure. At this latitude, one second of 

latitude is 30. 865 meters and one second of longitude is 25. 237 meters. The distance 

between the C-band antenna and the L-band antenna is 139 meters and between the 

C-band antenna and the VHF antenna is 136 m,eterJs. The ephemeris station location 

shows the center of this station to be 25 meters east and 40 meters north of the VHF 

antenna. 

6.1 

6.1. 1 

SIMU LT ANE OU S RAN GIN G 

L-Band and C-Band to ATS-5 

The station layout depicted in figure 6. 2 shows the conditioIidor 'simul­

,taneous ranging with L-band and C -band to the A TS-5 satellite. The A TS Satellite 

Acquisition Tables for Mojave state the ATS-5 azimuth as being approximately 1600 

o ".7, 
and the elevation as 47. 5 from Mojave. These are the pointing angles for the two 

antennas. The two arrowed lines in theupper layout labeled 1'0 A TS-5 11 are the plan 

'view of the radiation paths at 160
0 

azimuth from each antenna. Since the satellite is 

at such a distance, these lineR can be considered parallel. If a perpendicular line 

(dotted line in the figure) is dra:wn:from the C-bandailtenna point to theL-band~_ 

. radiation line,the distance (x) from tllisjntercept to the L':'b::mdantenna is calculated . . ".~) ~ 

6.1 

~- . 



T 
I 

o 

I - -1 rn- - -
--

11 Dim n ions in 

Figur . 1 Mojave Ground Station Antenna La out 

. 2 



---

AT -'" 

o AT - 5 -5 

Elevation: 47 .. 50 

Figure 6.2 Simultaneous L-Band and C-Band Ranging to ATS-5 

6. 3 



I 

j 

I 
d 

I 

1-
I-

\-
I 

to be 21 meters. This means that on the ground the L-band antenna is 21 meters 

further away from the satellite than C-band antenna. The lower figure labeled "View 

A, " is a side view of the railiation paths at the plane labeled "View All in the upper 

figure. This shows the antenna elevation angles of 47.50 to the ATS-5 satellite and 

the distance of 21 meters is along the ground. If a perpendicular line is drawn from 

the C-band antenna to the L-band radiation line, the distance (y) from this intercept 

to the L-band antenna is 14 meters. From this location and path geometry, it is seen 

that the range to the ATS-5 satellite is 14 meters longer from the L-band antenn!i. than 

it is from the C-band antenna. 

6. L 2 C-Band and VHF to ATS-1 

Figure 6.3 is a station layout for the simultaneous ranging to the ATS-1 

satellite with C-band and VHF. In this figure the antenna pointing angles are 

approximately 227.50 in azimuth and 36.70 in elevation. Again, the two arrowed 

lines in the upper figure are the radiation paths at an azimuth of 227. 50 toward the 

antenna. The C-band antenna for this layout is calculated to have an x distance of 

100 meters along the ground beyond the VHF antenna. The side view (View A) showing 

the antenna elevation angles of 36. 70 calculates the y distance to be 80 meters. 

The:refore, from this path geometry it is seen that the VHF range to the ATS-1 

satellite will be 80 meters shorter than the C-band range to this satellite. 

6. 1. 3 C-Band and VHF to ATS-3 

The antenna layout for the simultaneous C-band and VHF ranging to the 

ATS-3 satelHte is shown in figure 6.4. The antenna pointing angles are approximately 

1170 in azimuth and 27. 20 in elevation. Similarly, from this path geometry the VHF 

antenna is shown to have an x distance behind the C-band antenna of 120 meters along 

the ground and a y distance of 107 meters. The VH.F ranging to the ATS-3 satellite, 

therefore, will be 107 meters longer than the C-band ranging. 

6.2 POSITION LOCATION 

6.2.1 C-Band and L-Band Ranging 

In the pOSition location experiment, the data reduction computer program 

located, for each satellite, the precise point in space that was described by the 

ephemeris data obtained from the Goddard orbit determination program. This point 

was then used as the center of flsphere with the meae-)ured range data as the radius. 

The intersection of this sphere along the earth describes a circle. Assuming that the 

twoIIJ)easured rangings are precise .tl1ecircl~ will p~ss back through theante"nna 

location points. :-C 
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The layout in figure 6. 5 depicts thli'. L-band antenna radiating in the direction 

of ATS-5 and the C-band antenna radiating towi;\: . .'d ATS-l. Each dotted line represents 

a portion of an arc which would be drawn using the satellite as the circle center. Since 

the radius is extremely large, this arc is essentially a straight line perpendicular to 

the direction of radiation. As stated before, these lines assume that the two rangings 

are precise, causing the circle to pass through the antenna location. The intersection 

of these two arcs will be the "position location" obtained from these two rangings. If 

the measured ranging is shorter than the corresponding ephemeris data, the radius will 

not reach the antenna point, thus causing the arc to be drawn in front of the antenna. 

Conversely, if the measured ranging is longer, then the radius overshoots the antenna 

point, causing the arc to be drawn beyond the antenna. The ephemeris station location 

as shown in this layout plan is used as the target point in the position location data 

reduction program. This target point is shown to be 100 meters from fbe ra.l1ging 

intersect points in this figure. 

6. 2. 2 C- Band and VHF Ranging 

The position location diagram for the condition where the C-band system 

ranges to ATS-1 and the VHF system ranges to ATS-3 is shown in figure 6.6. This 

figure shows that the two arcs from the rangings intersect considerably north of the 

ground station. The distance from the tar~et to this intersect is 60 meters to the 

northeast. 

Figure 6.7 reverses the coniitions, showing the C-band system ranges to 

ATS-3 and the VHF system ranges to ATS-l. This time the two arcs from these 

rangings cross south of the station. This point is 151 meters southeast of the ephemeris 

target location. 

Thede examples are presented not to determine a position correction value 

but to illustrate that minor built-in errors will exist in the position location data 

reduction program due to factors such as the antenna separation, the !lshifted" 
, 

ephemeris station target location, or the cyclic nature of the ephemeriE) data. They 

must all be c9nsidered in the analysis of position location data. 

6.7 
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Ambiguity - An ambiguity exists in the C-band range measurement to a synchronous 

satellite because the round trip range to the satellite exceeds the wavelength of the 

lowest tone used in measuring this range. Since the range measurement is actually 

accomplished by making a phase comparison on the returned tone, it is not possible 

for the ranging equipment to determine which cycle of the returned tone is being 

compared. Consequently, since the actual round trip range to the spacecra~~t exceeds 

the wavelength of the 8 hertz tone (125,000 microseconds) in the ATSR equipment, an 

ambiguity exists. To resolve this, the knowledge that the round trip range to a 

synchronous satellite is in the order of 250,000 usec must be used. A typical ATSR 

range measurement is 123,030 usec. It is therefore obvious that the range measure­

ment lies in the second 8 hertz lane; and that 125, 000 usec, corresponding to one 

8 hertz wavelength, must be added to the measured range, giving 248, 030 usec as the 

actual range. 

An ambiguity exists in the L-band range measurement which is similar to 

the C-band ambiguity, except that the range tone frequency t~'3 either 4 or 20 kHz, 

corresponding to an ambiguity lane width of 250 usec and 50 usec"respectively. To 

resolve the L-band ambiguity it is necessary to use eitl1er the C-band range or the 
.~ . 

ephemeris range to determine the number of ambiguous lanes. 

SjN - Signal-to-Noise Ratio 

Sj C - Spacecraft 

CjN - Carrier -to-Noise Ratio per Unit of Bandwidth 
o 

Mercury Geoid - This is a particular model for the shape of the earth, giving the 

radius of the earth as a function of latitude. This information is required for station 

position:location by means of ranging to two satellites. 

G.lj2 

\ 

\ 
! ~ 


	0012A01
	0012A02
	0012A03
	0012A04
	0012A05
	0012A06
	0012A07
	0012A08
	0012A09
	0012A10
	0012A11
	0012A12
	0012A13
	0012B01
	0012B02
	0012B03
	0012B04
	0012B05
	0012B06
	0012B07
	0012B08
	0012B09
	0012B10
	0012B11
	0012B12
	0012B13
	0012B14
	0012C01
	0012C02
	0012C03
	0012C04
	0012C05
	0012C06
	0012C07
	0012C08
	0012C09
	0012C10
	0012C11
	0012C12
	0012C13
	0012C14
	0012D01
	0012D02
	0012D03
	0012D04
	0012D05
	0012D06
	0012D07
	0012D08
	0012D09
	0012D10
	0012D11
	0012D12
	0012D13
	0012D14
	0012E01
	0012E02
	0012E03
	0012E04
	0012E05
	0012E06
	0012E07
	0012E08
	0012E09
	0012E10
	0012E11
	0012E12
	0012E13
	0012E14
	0012F01
	0012F02
	0012F03
	0012F04
	0012F05
	0012F06
	0012F07
	0012F08
	0012F09
	0012F10
	0012F11
	0012F12
	0012F13
	0012F14
	0012G01
	0012G02
	0012G03
	0012G04
	0012G05
	0012G06
	0012G07
	0012G08
	0012G09
	0012G10
	0012G11
	0012G12
	0012G13
	0012G14
	0013A01
	0013A01
	0013A02
	0013A03
	0013A04
	0013A05
	0013A06
	0013A07
	0013A08
	0013A09
	0013A10
	0013A11
	0013A12
	0013A13
	0013B01
	0013B02
	0013B03
	0013B04
	0013B05
	0013B06
	0013B07
	0013B08
	0013B09
	0013B10
	0013B11
	0013B12
	0013B13
	0013B14
	0013C01
	0013C02
	0013C03
	0013C04



